{"title":"CRISPR-p53相互作用组对临床CRISPR/Cas9应用的潜在影响","authors":"Long Jiang, F. Wermeling","doi":"10.18632/oncoscience.557","DOIUrl":null,"url":null,"abstract":"CRISPR/Cas9-based tools are anticipated to transform the gene therapy field by facilitating the correction of disease-causing mutations. However, CRISPR/Cas9 generates DNA damage, which triggers a DNA damage response centered around the tumor-suppressor p53. In this research perspective, we discuss implications of this and describe a CRISPR-p53 interactome with cancer-related genes that, if mutated, can give cells a selective advantage following exposure to CRISPR/Cas9. We propose that the genes in the CRISPR-p53 interactome should be monitored in the clinical setting and describe that transient p53 inhibition could be used to limit the enrichment of cells with such mutations.","PeriodicalId":94164,"journal":{"name":"Oncoscience","volume":"51 1","pages":"27 - 29"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A CRISPR-p53 interactome with potential implications for clinical CRISPR/Cas9 use\",\"authors\":\"Long Jiang, F. Wermeling\",\"doi\":\"10.18632/oncoscience.557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CRISPR/Cas9-based tools are anticipated to transform the gene therapy field by facilitating the correction of disease-causing mutations. However, CRISPR/Cas9 generates DNA damage, which triggers a DNA damage response centered around the tumor-suppressor p53. In this research perspective, we discuss implications of this and describe a CRISPR-p53 interactome with cancer-related genes that, if mutated, can give cells a selective advantage following exposure to CRISPR/Cas9. We propose that the genes in the CRISPR-p53 interactome should be monitored in the clinical setting and describe that transient p53 inhibition could be used to limit the enrichment of cells with such mutations.\",\"PeriodicalId\":94164,\"journal\":{\"name\":\"Oncoscience\",\"volume\":\"51 1\",\"pages\":\"27 - 29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18632/oncoscience.557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncoscience.557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A CRISPR-p53 interactome with potential implications for clinical CRISPR/Cas9 use
CRISPR/Cas9-based tools are anticipated to transform the gene therapy field by facilitating the correction of disease-causing mutations. However, CRISPR/Cas9 generates DNA damage, which triggers a DNA damage response centered around the tumor-suppressor p53. In this research perspective, we discuss implications of this and describe a CRISPR-p53 interactome with cancer-related genes that, if mutated, can give cells a selective advantage following exposure to CRISPR/Cas9. We propose that the genes in the CRISPR-p53 interactome should be monitored in the clinical setting and describe that transient p53 inhibition could be used to limit the enrichment of cells with such mutations.