Masayoshi Yoshimatsu, Hiroe Ohnishi, Chengzhu Zhao, Yasuyuki Hayashi, Fumihiko Kuwata, S. Kaba, Hideaki Okuyama, Yoshitaka Kawai, Nao Hiwatashi, Yo Kishimoto, T. Sakamoto, M. Ikeya, K. Omori
{"title":"人多能干细胞间充质干细胞经神经嵴细胞在体内再生大鼠喉软骨","authors":"Masayoshi Yoshimatsu, Hiroe Ohnishi, Chengzhu Zhao, Yasuyuki Hayashi, Fumihiko Kuwata, S. Kaba, Hideaki Okuyama, Yoshitaka Kawai, Nao Hiwatashi, Yo Kishimoto, T. Sakamoto, M. Ikeya, K. Omori","doi":"10.2139/ssrn.3733569","DOIUrl":null,"url":null,"abstract":"The laryngotracheal cartilage is a cardinal framework for the maintenance of the airway for breathing, which occasionally requires reconstruction. Because hyaline cartilage has a poor intrinsic regenerative ability, various regenerative approaches have been attempted to regenerate laryngotracheal cartilage. The use of autologous mesenchymal stem cells (MSCs) for cartilage regeneration has been widely investigated. However, long-term culture may limit proliferative capacity. Human-induced pluripotent stem cell-derived MSCs (iMSCs) can circumvent this problem due to their unlimited proliferative capacity. This study aimed to investigate the efficacy of iMSCs in the regeneration of thyroid cartilage in immunodeficient rats. Herein, we induced iMSCs through neural crest cell intermediates. For the relevance to prospective future clinical application, induction was conducted under xeno-free/serum-free conditions. Then, clumps fabricated from an iMSC/extracellular matrix complex (C-iMSC) were transplanted into thyroid cartilage defects in immunodeficient rats. Histological examinations revealed cartilage-like regenerated tissue and human nuclear antigen (HNA)-positive surviving transplanted cells in the regenerated lesion. HNA-positive cells co-expressed SOX9, and type II collagen was identified around HNA-positive cells. These results indicated that the transplanted C-iMSCs promoted thyroid cartilage regeneration and some of the iMSCs differentiated into chondrogenic lineage cells. Induced MSCs may be a promising candidate cell therapy for human laryngotracheal reconstruction.","PeriodicalId":18268,"journal":{"name":"Materials Engineering eJournal","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"In Vivo Regeneration of Rat Laryngeal Cartilage with Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells Via Neural Crest Cells\",\"authors\":\"Masayoshi Yoshimatsu, Hiroe Ohnishi, Chengzhu Zhao, Yasuyuki Hayashi, Fumihiko Kuwata, S. Kaba, Hideaki Okuyama, Yoshitaka Kawai, Nao Hiwatashi, Yo Kishimoto, T. Sakamoto, M. Ikeya, K. Omori\",\"doi\":\"10.2139/ssrn.3733569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The laryngotracheal cartilage is a cardinal framework for the maintenance of the airway for breathing, which occasionally requires reconstruction. Because hyaline cartilage has a poor intrinsic regenerative ability, various regenerative approaches have been attempted to regenerate laryngotracheal cartilage. The use of autologous mesenchymal stem cells (MSCs) for cartilage regeneration has been widely investigated. However, long-term culture may limit proliferative capacity. Human-induced pluripotent stem cell-derived MSCs (iMSCs) can circumvent this problem due to their unlimited proliferative capacity. This study aimed to investigate the efficacy of iMSCs in the regeneration of thyroid cartilage in immunodeficient rats. Herein, we induced iMSCs through neural crest cell intermediates. For the relevance to prospective future clinical application, induction was conducted under xeno-free/serum-free conditions. Then, clumps fabricated from an iMSC/extracellular matrix complex (C-iMSC) were transplanted into thyroid cartilage defects in immunodeficient rats. Histological examinations revealed cartilage-like regenerated tissue and human nuclear antigen (HNA)-positive surviving transplanted cells in the regenerated lesion. HNA-positive cells co-expressed SOX9, and type II collagen was identified around HNA-positive cells. These results indicated that the transplanted C-iMSCs promoted thyroid cartilage regeneration and some of the iMSCs differentiated into chondrogenic lineage cells. Induced MSCs may be a promising candidate cell therapy for human laryngotracheal reconstruction.\",\"PeriodicalId\":18268,\"journal\":{\"name\":\"Materials Engineering eJournal\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Engineering eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3733569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3733569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In Vivo Regeneration of Rat Laryngeal Cartilage with Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells Via Neural Crest Cells
The laryngotracheal cartilage is a cardinal framework for the maintenance of the airway for breathing, which occasionally requires reconstruction. Because hyaline cartilage has a poor intrinsic regenerative ability, various regenerative approaches have been attempted to regenerate laryngotracheal cartilage. The use of autologous mesenchymal stem cells (MSCs) for cartilage regeneration has been widely investigated. However, long-term culture may limit proliferative capacity. Human-induced pluripotent stem cell-derived MSCs (iMSCs) can circumvent this problem due to their unlimited proliferative capacity. This study aimed to investigate the efficacy of iMSCs in the regeneration of thyroid cartilage in immunodeficient rats. Herein, we induced iMSCs through neural crest cell intermediates. For the relevance to prospective future clinical application, induction was conducted under xeno-free/serum-free conditions. Then, clumps fabricated from an iMSC/extracellular matrix complex (C-iMSC) were transplanted into thyroid cartilage defects in immunodeficient rats. Histological examinations revealed cartilage-like regenerated tissue and human nuclear antigen (HNA)-positive surviving transplanted cells in the regenerated lesion. HNA-positive cells co-expressed SOX9, and type II collagen was identified around HNA-positive cells. These results indicated that the transplanted C-iMSCs promoted thyroid cartilage regeneration and some of the iMSCs differentiated into chondrogenic lineage cells. Induced MSCs may be a promising candidate cell therapy for human laryngotracheal reconstruction.