Yasaswy Kasarabada, Sudheer Ram Thulasi Raman, R. Vemuri
{"title":"顺序逻辑电路的深度状态加密","authors":"Yasaswy Kasarabada, Sudheer Ram Thulasi Raman, R. Vemuri","doi":"10.1109/ISVLSI.2019.00068","DOIUrl":null,"url":null,"abstract":"Logic encryption has been proposed as a potential solution to the hardware IP piracy problem. Naive logic encryption methods were shown to be susceptible to Boolean satisfiability (SAT) based attacks. In addition, the recently proposed Sequential SAT attack is able to decrypt many encrypted sequential logic circuits. This paper introduces a new logic encryption scheme that encrypts a sequential circuit on the occurrence of a chosen deep state. Two novel techniques to select a suitable deep state from the gate-level netlist of the design have been introduced. The attack resiliency of the proposed encryption technique against the sequential SAT attack is demonstrated using several standard benchmark circuits.","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"18 1","pages":"338-343"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Deep State Encryption for Sequential Logic Circuits\",\"authors\":\"Yasaswy Kasarabada, Sudheer Ram Thulasi Raman, R. Vemuri\",\"doi\":\"10.1109/ISVLSI.2019.00068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Logic encryption has been proposed as a potential solution to the hardware IP piracy problem. Naive logic encryption methods were shown to be susceptible to Boolean satisfiability (SAT) based attacks. In addition, the recently proposed Sequential SAT attack is able to decrypt many encrypted sequential logic circuits. This paper introduces a new logic encryption scheme that encrypts a sequential circuit on the occurrence of a chosen deep state. Two novel techniques to select a suitable deep state from the gate-level netlist of the design have been introduced. The attack resiliency of the proposed encryption technique against the sequential SAT attack is demonstrated using several standard benchmark circuits.\",\"PeriodicalId\":6703,\"journal\":{\"name\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"18 1\",\"pages\":\"338-343\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2019.00068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep State Encryption for Sequential Logic Circuits
Logic encryption has been proposed as a potential solution to the hardware IP piracy problem. Naive logic encryption methods were shown to be susceptible to Boolean satisfiability (SAT) based attacks. In addition, the recently proposed Sequential SAT attack is able to decrypt many encrypted sequential logic circuits. This paper introduces a new logic encryption scheme that encrypts a sequential circuit on the occurrence of a chosen deep state. Two novel techniques to select a suitable deep state from the gate-level netlist of the design have been introduced. The attack resiliency of the proposed encryption technique against the sequential SAT attack is demonstrated using several standard benchmark circuits.