{"title":"过程补偿微机械谐振器","authors":"G. K. Ho, J. Perng, F. Ayazi","doi":"10.1109/MEMSYS.2007.4432960","DOIUrl":null,"url":null,"abstract":"Manufacturability and yield are the major challenges prior to adoption of micromechanical resonators as frequency references. In this paper, a design for manufacturability (DFM) technique to achieve absolute frequency accuracy is presented. Non-idealities of a deep reactive ion etching process are examined and determined to be random. The variations in resonator geometry are assumed to be locally systematic and are represented as a process bias. The effect of process bias on resonator center frequency is modeled and the procedure for optimizing for zero sensitivity is explained. Process bias on a 10 MHz optimized design was replicated with electron-beam lithography and supporting data demonstrating DFM is reported.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"15 1","pages":"183-186"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Process compensated micromechanical resonators\",\"authors\":\"G. K. Ho, J. Perng, F. Ayazi\",\"doi\":\"10.1109/MEMSYS.2007.4432960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manufacturability and yield are the major challenges prior to adoption of micromechanical resonators as frequency references. In this paper, a design for manufacturability (DFM) technique to achieve absolute frequency accuracy is presented. Non-idealities of a deep reactive ion etching process are examined and determined to be random. The variations in resonator geometry are assumed to be locally systematic and are represented as a process bias. The effect of process bias on resonator center frequency is modeled and the procedure for optimizing for zero sensitivity is explained. Process bias on a 10 MHz optimized design was replicated with electron-beam lithography and supporting data demonstrating DFM is reported.\",\"PeriodicalId\":6388,\"journal\":{\"name\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"15 1\",\"pages\":\"183-186\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2007.4432960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2007.4432960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Manufacturability and yield are the major challenges prior to adoption of micromechanical resonators as frequency references. In this paper, a design for manufacturability (DFM) technique to achieve absolute frequency accuracy is presented. Non-idealities of a deep reactive ion etching process are examined and determined to be random. The variations in resonator geometry are assumed to be locally systematic and are represented as a process bias. The effect of process bias on resonator center frequency is modeled and the procedure for optimizing for zero sensitivity is explained. Process bias on a 10 MHz optimized design was replicated with electron-beam lithography and supporting data demonstrating DFM is reported.