Huiwen Jia, Siqian Shen, Jorge Alberto Ramírez García, Cong Shi
{"title":"是否与第三方快递服务合作?大流行期间面临外卖需求激增的餐馆的预测和决策工具","authors":"Huiwen Jia, Siqian Shen, Jorge Alberto Ramírez García, Cong Shi","doi":"10.1287/serv.2021.0294","DOIUrl":null,"url":null,"abstract":"Amidst the COVID-19 pandemic, restaurants become more reliant on no-contact pick-up or delivery ways for serving customers. As a result, they need to make tactical planning decisions such as whether to partner with online platforms, to form their own delivery team, or both. In this paper, we develop an integrated prediction-decision model to analyze the profit of combining the two approaches and to decide the needed number of drivers under stochastic demand. We first use the susceptible-infected-recovered (SIR) model to forecast future infected cases in a given region and then construct an autoregressive-moving-average (ARMA) regression model to predict food-ordering demand. Using predicted demand samples, we formulate a stochastic integer program to optimize food delivery plans. We conduct numerical studies using COVID-19 data and food-ordering demand data collected from local restaurants in Nuevo Leon, Mexico, from April to October 2020, to show results for helping restaurants build contingency plans under rapid market changes. Our method can be used under unexpected demand surges, various infection/vaccination status, and demand patterns. Our results show that a restaurant can benefit from partnering with third-party delivery platforms when (i) the subscription fee is low, (ii) customers can flexibly decide whether to order from platforms or from restaurants directly, (iii) customers require more efficient delivery, (iv) average delivery distance is long, or (v) demand variance is high.","PeriodicalId":46249,"journal":{"name":"Service Science","volume":"9 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Partner with a Third-Party Delivery Service or Not? A Prediction-and-Decision Tool for Restaurants Facing Takeout Demand Surges During a Pandemic\",\"authors\":\"Huiwen Jia, Siqian Shen, Jorge Alberto Ramírez García, Cong Shi\",\"doi\":\"10.1287/serv.2021.0294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amidst the COVID-19 pandemic, restaurants become more reliant on no-contact pick-up or delivery ways for serving customers. As a result, they need to make tactical planning decisions such as whether to partner with online platforms, to form their own delivery team, or both. In this paper, we develop an integrated prediction-decision model to analyze the profit of combining the two approaches and to decide the needed number of drivers under stochastic demand. We first use the susceptible-infected-recovered (SIR) model to forecast future infected cases in a given region and then construct an autoregressive-moving-average (ARMA) regression model to predict food-ordering demand. Using predicted demand samples, we formulate a stochastic integer program to optimize food delivery plans. We conduct numerical studies using COVID-19 data and food-ordering demand data collected from local restaurants in Nuevo Leon, Mexico, from April to October 2020, to show results for helping restaurants build contingency plans under rapid market changes. Our method can be used under unexpected demand surges, various infection/vaccination status, and demand patterns. Our results show that a restaurant can benefit from partnering with third-party delivery platforms when (i) the subscription fee is low, (ii) customers can flexibly decide whether to order from platforms or from restaurants directly, (iii) customers require more efficient delivery, (iv) average delivery distance is long, or (v) demand variance is high.\",\"PeriodicalId\":46249,\"journal\":{\"name\":\"Service Science\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Service Science\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/serv.2021.0294\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Service Science","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/serv.2021.0294","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS","Score":null,"Total":0}
Partner with a Third-Party Delivery Service or Not? A Prediction-and-Decision Tool for Restaurants Facing Takeout Demand Surges During a Pandemic
Amidst the COVID-19 pandemic, restaurants become more reliant on no-contact pick-up or delivery ways for serving customers. As a result, they need to make tactical planning decisions such as whether to partner with online platforms, to form their own delivery team, or both. In this paper, we develop an integrated prediction-decision model to analyze the profit of combining the two approaches and to decide the needed number of drivers under stochastic demand. We first use the susceptible-infected-recovered (SIR) model to forecast future infected cases in a given region and then construct an autoregressive-moving-average (ARMA) regression model to predict food-ordering demand. Using predicted demand samples, we formulate a stochastic integer program to optimize food delivery plans. We conduct numerical studies using COVID-19 data and food-ordering demand data collected from local restaurants in Nuevo Leon, Mexico, from April to October 2020, to show results for helping restaurants build contingency plans under rapid market changes. Our method can be used under unexpected demand surges, various infection/vaccination status, and demand patterns. Our results show that a restaurant can benefit from partnering with third-party delivery platforms when (i) the subscription fee is low, (ii) customers can flexibly decide whether to order from platforms or from restaurants directly, (iii) customers require more efficient delivery, (iv) average delivery distance is long, or (v) demand variance is high.
期刊介绍:
Service Science publishes innovative and original papers on all topics related to service, including work that crosses traditional disciplinary boundaries. It is the primary forum for presenting new theories and new empirical results in the emerging, interdisciplinary science of service, incorporating research, education, and practice, documenting empirical, modeling, and theoretical studies of service and service systems. Topics covered include but are not limited to the following: Service Management, Operations, Engineering, Economics, Design, and Marketing Service System Analysis and Computational Simulation Service Theories and Research Methods Case Studies and Application Areas, such as healthcare, energy, finance, information technology, logistics, and public services.