由到达海岸的长海浪产生的电动力效应

IF 1.2 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
V. Surkov, V. Sorokin, Aleksey K. Yashchenko
{"title":"由到达海岸的长海浪产生的电动力效应","authors":"V. Surkov, V. Sorokin, Aleksey K. Yashchenko","doi":"10.4401/ag-8792","DOIUrl":null,"url":null,"abstract":"Electrokinetic effect (EK) caused by long oceanic waves in porous water-saturated rocks of seabed and shore is examined theoretically. One possible reason for this effect is the motion of groundwater due to the volume deformation of porous rocks by oceanic waves coming on shore. The same mechanism is responsible for seismoelectric effect observed during seismic waves passage through ground-recording station. In this study, we examine another mechanism in which the wave-produced variable pressure on the seabed plays a role of a piston pushing seawater through the seabed rocks into sandy or porous rocks of the seashore thereby exciting the EK effect. To estimate this effect, we first consider a long gravity wave and then solve 2D‑problem on the pressure variations produced by this wave on the bottom. This solution is used to describe groundwater filtration in porous rocks subjected to the variable pressure of seawater. The EK current and telluric electric field in a porous medium are derivable through the pressure gradient of porous fluid. The amplitude of telluric electric field in a porous medium has been shown to decrease almost exponentially with distance from a shoreline. A penetration depth of the telluric field as a function of wave frequency in the range of 10‑100 mHz was analyzed. A role played by EK effect in the generation of ULF natural electromagnetic noise in coastal zone was discussed.","PeriodicalId":50766,"journal":{"name":"Annals of Geophysics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electrokinetic effect provided by long oceanic waves coming on shore\",\"authors\":\"V. Surkov, V. Sorokin, Aleksey K. Yashchenko\",\"doi\":\"10.4401/ag-8792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrokinetic effect (EK) caused by long oceanic waves in porous water-saturated rocks of seabed and shore is examined theoretically. One possible reason for this effect is the motion of groundwater due to the volume deformation of porous rocks by oceanic waves coming on shore. The same mechanism is responsible for seismoelectric effect observed during seismic waves passage through ground-recording station. In this study, we examine another mechanism in which the wave-produced variable pressure on the seabed plays a role of a piston pushing seawater through the seabed rocks into sandy or porous rocks of the seashore thereby exciting the EK effect. To estimate this effect, we first consider a long gravity wave and then solve 2D‑problem on the pressure variations produced by this wave on the bottom. This solution is used to describe groundwater filtration in porous rocks subjected to the variable pressure of seawater. The EK current and telluric electric field in a porous medium are derivable through the pressure gradient of porous fluid. The amplitude of telluric electric field in a porous medium has been shown to decrease almost exponentially with distance from a shoreline. A penetration depth of the telluric field as a function of wave frequency in the range of 10‑100 mHz was analyzed. A role played by EK effect in the generation of ULF natural electromagnetic noise in coastal zone was discussed.\",\"PeriodicalId\":50766,\"journal\":{\"name\":\"Annals of Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.4401/ag-8792\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.4401/ag-8792","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

从理论上研究了长海浪在海底和海岸多孔饱和水岩石中引起的电动力学效应。造成这种影响的一个可能原因是,由于海岸上的海浪使多孔岩石发生体积变形,从而引起地下水的运动。在地震波通过地面记录台站时观测到的震电效应也具有相同的机理。在这项研究中,我们研究了另一种机制,其中海底波浪产生的可变压力起到活塞的作用,推动海水通过海底岩石进入海岸的沙质或多孔岩石,从而激发EK效应。为了估计这种影响,我们首先考虑一个长重力波,然后解决由该波在底部产生的压力变化的二维问题。该解用于描述受海水变压作用的多孔岩石中地下水的过滤。多孔介质中的EK电流和大地电场可以通过多孔流体的压力梯度推导出来。在多孔介质中,大地电场的振幅随着离海岸线的距离几乎呈指数递减。分析了10 ~ 100 mHz范围内大地磁场的穿透深度随波频的变化规律。讨论了EK效应在海岸带极低频自然电磁噪声产生中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrokinetic effect provided by long oceanic waves coming on shore
Electrokinetic effect (EK) caused by long oceanic waves in porous water-saturated rocks of seabed and shore is examined theoretically. One possible reason for this effect is the motion of groundwater due to the volume deformation of porous rocks by oceanic waves coming on shore. The same mechanism is responsible for seismoelectric effect observed during seismic waves passage through ground-recording station. In this study, we examine another mechanism in which the wave-produced variable pressure on the seabed plays a role of a piston pushing seawater through the seabed rocks into sandy or porous rocks of the seashore thereby exciting the EK effect. To estimate this effect, we first consider a long gravity wave and then solve 2D‑problem on the pressure variations produced by this wave on the bottom. This solution is used to describe groundwater filtration in porous rocks subjected to the variable pressure of seawater. The EK current and telluric electric field in a porous medium are derivable through the pressure gradient of porous fluid. The amplitude of telluric electric field in a porous medium has been shown to decrease almost exponentially with distance from a shoreline. A penetration depth of the telluric field as a function of wave frequency in the range of 10‑100 mHz was analyzed. A role played by EK effect in the generation of ULF natural electromagnetic noise in coastal zone was discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Geophysics
Annals of Geophysics 地学-地球化学与地球物理
CiteScore
2.40
自引率
0.00%
发文量
38
审稿时长
4-8 weeks
期刊介绍: Annals of Geophysics is an international, peer-reviewed, open-access, online journal. Annals of Geophysics welcomes contributions on primary research on Seismology, Geodesy, Volcanology, Physics and Chemistry of the Earth, Oceanography and Climatology, Geomagnetism and Paleomagnetism, Geodynamics and Tectonophysics, Physics and Chemistry of the Atmosphere. It provides: -Open-access, freely accessible online (authors retain copyright) -Fast publication times -Peer review by expert, practicing researchers -Free of charge publication -Post-publication tools to indicate quality and impact -Worldwide media coverage. Annals of Geophysics is published by Istituto Nazionale di Geofisica e Vulcanologia (INGV), nonprofit public research institution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信