正则化Stokeslets方法中的二维力约束

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
O. Maxian, Wanda Strychalski
{"title":"正则化Stokeslets方法中的二维力约束","authors":"O. Maxian, Wanda Strychalski","doi":"10.2140/camcos.2019.14.149","DOIUrl":null,"url":null,"abstract":"For many biological systems that involve elastic structures immersed in fluid, small length scales mean that inertial effects are also small, and the fluid obeys the Stokes equations. One way to solve the model equations representing such systems is through the Stokeslet, the fundamental solution to the Stokes equations, and its regularized counterpart, which treats the singularity of the velocity at points where force is applied. In two dimensions, an additional complication arises from Stokes' paradox, whereby the velocity from the Stokeslet is unbounded at infinity when the net hydrodynamic force within the domain is nonzero, invalidating the solutions. A straightforward computationally inexpensive method is presented for obtaining valid solutions to the Stokes equations for net nonzero forcing. The approach is based on imposing a mean zero velocity condition on a large curve that surrounds the domain of interest. The condition is shown to be equivalent to a net-zero force condition, where the opposite forces are applied on the large curve. The numerical method is applied to models of cellular motility and blebbing.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"2D force constraints in the method of regularized Stokeslets\",\"authors\":\"O. Maxian, Wanda Strychalski\",\"doi\":\"10.2140/camcos.2019.14.149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For many biological systems that involve elastic structures immersed in fluid, small length scales mean that inertial effects are also small, and the fluid obeys the Stokes equations. One way to solve the model equations representing such systems is through the Stokeslet, the fundamental solution to the Stokes equations, and its regularized counterpart, which treats the singularity of the velocity at points where force is applied. In two dimensions, an additional complication arises from Stokes' paradox, whereby the velocity from the Stokeslet is unbounded at infinity when the net hydrodynamic force within the domain is nonzero, invalidating the solutions. A straightforward computationally inexpensive method is presented for obtaining valid solutions to the Stokes equations for net nonzero forcing. The approach is based on imposing a mean zero velocity condition on a large curve that surrounds the domain of interest. The condition is shown to be equivalent to a net-zero force condition, where the opposite forces are applied on the large curve. The numerical method is applied to models of cellular motility and blebbing.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/camcos.2019.14.149\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/camcos.2019.14.149","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

对于许多涉及弹性结构浸入流体的生物系统,较小的长度尺度意味着惯性效应也较小,流体服从Stokes方程。求解代表这种系统的模型方程的一种方法是通过Stokeslet方程,Stokeslet方程的基本解,以及它的正则化对应物,它处理施加力处速度的奇点。在二维空间中,额外的复杂性来自Stokes悖论,即当区域内的净水动力是非零时,来自Stokeslet的速度在无穷远处是无界的,从而使解无效。本文提出了一种计算简便的方法来求解净非零力的Stokes方程的有效解。该方法是基于在感兴趣的区域周围的大曲线上施加平均零速度条件。该条件被证明等同于净零力条件,其中在大曲线上施加相反的力。数值方法应用于细胞运动和气泡模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2D force constraints in the method of regularized Stokeslets
For many biological systems that involve elastic structures immersed in fluid, small length scales mean that inertial effects are also small, and the fluid obeys the Stokes equations. One way to solve the model equations representing such systems is through the Stokeslet, the fundamental solution to the Stokes equations, and its regularized counterpart, which treats the singularity of the velocity at points where force is applied. In two dimensions, an additional complication arises from Stokes' paradox, whereby the velocity from the Stokeslet is unbounded at infinity when the net hydrodynamic force within the domain is nonzero, invalidating the solutions. A straightforward computationally inexpensive method is presented for obtaining valid solutions to the Stokes equations for net nonzero forcing. The approach is based on imposing a mean zero velocity condition on a large curve that surrounds the domain of interest. The condition is shown to be equivalent to a net-zero force condition, where the opposite forces are applied on the large curve. The numerical method is applied to models of cellular motility and blebbing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信