H. Madanipour, Y. Kim, C. Kim, N. Shahane, D. Mishra, L. Nguyen
{"title":"金属间化合物生长对低轮廓焊点电迁移失效机制的影响","authors":"H. Madanipour, Y. Kim, C. Kim, N. Shahane, D. Mishra, L. Nguyen","doi":"10.1109/ECTC.2019.00204","DOIUrl":null,"url":null,"abstract":"This paper describes the kinetic and microstructural mechanism of electromigration (EM) failure found in low-profile solder joints where EM and intermetallic phase formation compete for the same volume of Sn. The low-profile solder joint used in our study was made of 20-25um thick solder situated in between a Cu pillar and a Ni coated Cu lead frame (LF). The samples were EM tested in a temperature range of 140-170oC with the current densities varying between 35-45 KA/cm2 in an oil bath to induce failure without Joule Heat induced artifacts. Our studies on EM failure kinetics and microstructural mechanism have produced two key findings. The first finding suggests that the EM diffusivity (Z*D) of diffusing species (Sn, Ni, Cu) in the solder matrix can be uniquely ranked from microstructural analysis, and it is estimated to be (Z*D) Cu> (Z*D) Sn>(Z*D) Ni. This difference in EM diffusivity causes Cu-Sn and Ni-Sn intermetallic compounds (IMC) to develop in distinctively different manners under EM, leading to different EM failure mechanisms. The second finding is that EM in low-profile solder joints consists of multiple failure stages: a) with EM-related voiding in Sn dominating at lower temperatures; while b) thermally-induced IMC growth and invasion competes with EM-induced Sn voiding at high temperatures leading to the complete failure of each joint.","PeriodicalId":6726,"journal":{"name":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","volume":"22 1","pages":"1316-1323"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of Intermetallic Compound Growth on Electromigration Failure Mechanism in Low-Profile Solder Joints\",\"authors\":\"H. Madanipour, Y. Kim, C. Kim, N. Shahane, D. Mishra, L. Nguyen\",\"doi\":\"10.1109/ECTC.2019.00204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the kinetic and microstructural mechanism of electromigration (EM) failure found in low-profile solder joints where EM and intermetallic phase formation compete for the same volume of Sn. The low-profile solder joint used in our study was made of 20-25um thick solder situated in between a Cu pillar and a Ni coated Cu lead frame (LF). The samples were EM tested in a temperature range of 140-170oC with the current densities varying between 35-45 KA/cm2 in an oil bath to induce failure without Joule Heat induced artifacts. Our studies on EM failure kinetics and microstructural mechanism have produced two key findings. The first finding suggests that the EM diffusivity (Z*D) of diffusing species (Sn, Ni, Cu) in the solder matrix can be uniquely ranked from microstructural analysis, and it is estimated to be (Z*D) Cu> (Z*D) Sn>(Z*D) Ni. This difference in EM diffusivity causes Cu-Sn and Ni-Sn intermetallic compounds (IMC) to develop in distinctively different manners under EM, leading to different EM failure mechanisms. The second finding is that EM in low-profile solder joints consists of multiple failure stages: a) with EM-related voiding in Sn dominating at lower temperatures; while b) thermally-induced IMC growth and invasion competes with EM-induced Sn voiding at high temperatures leading to the complete failure of each joint.\",\"PeriodicalId\":6726,\"journal\":{\"name\":\"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)\",\"volume\":\"22 1\",\"pages\":\"1316-1323\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2019.00204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2019.00204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Intermetallic Compound Growth on Electromigration Failure Mechanism in Low-Profile Solder Joints
This paper describes the kinetic and microstructural mechanism of electromigration (EM) failure found in low-profile solder joints where EM and intermetallic phase formation compete for the same volume of Sn. The low-profile solder joint used in our study was made of 20-25um thick solder situated in between a Cu pillar and a Ni coated Cu lead frame (LF). The samples were EM tested in a temperature range of 140-170oC with the current densities varying between 35-45 KA/cm2 in an oil bath to induce failure without Joule Heat induced artifacts. Our studies on EM failure kinetics and microstructural mechanism have produced two key findings. The first finding suggests that the EM diffusivity (Z*D) of diffusing species (Sn, Ni, Cu) in the solder matrix can be uniquely ranked from microstructural analysis, and it is estimated to be (Z*D) Cu> (Z*D) Sn>(Z*D) Ni. This difference in EM diffusivity causes Cu-Sn and Ni-Sn intermetallic compounds (IMC) to develop in distinctively different manners under EM, leading to different EM failure mechanisms. The second finding is that EM in low-profile solder joints consists of multiple failure stages: a) with EM-related voiding in Sn dominating at lower temperatures; while b) thermally-induced IMC growth and invasion competes with EM-induced Sn voiding at high temperatures leading to the complete failure of each joint.