利用非成像高光谱数据进行作物识别

P. V. Janse, R. Deshmukh
{"title":"利用非成像高光谱数据进行作物识别","authors":"P. V. Janse, R. Deshmukh","doi":"10.35940/ijeat.e2802.0610521","DOIUrl":null,"url":null,"abstract":"Crop type discrimination is still very challenging\ntask for researchers using non-imaging hyperspectral data. It is\nbecause of spectral reflectance similarity between crops. In this\nresearch work we have discriminated between four crops wheat,\njowar, bajara and maize. We have tried to overcome the problems\nwhich have been faced my researchers. Initially by visual\nanalysis we have selected 22 reflectance band which shows the\nabsorption property of particular molecules and classification\ntechnique is applied, but it has given us very poor result of\nclassification. We observed only 24% classification accuracy. So\nwe considered nine vegetation indices along with spectral bands\nand achieved better classification accuracy. ASD FieldSpec 4\nSpectroradiometer device is used for capturing spectral\nreflectance data. We calculated nine different vegetation indices\nand some selective reflectance bands are used for crop\nclassification. We have used Support Vector Machine (SVM) for\nclassification.","PeriodicalId":23601,"journal":{"name":"VOLUME-8 ISSUE-10, AUGUST 2019, REGULAR ISSUE","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crop Discrimination using Non-Imaging Hyperspectral Data\",\"authors\":\"P. V. Janse, R. Deshmukh\",\"doi\":\"10.35940/ijeat.e2802.0610521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crop type discrimination is still very challenging\\ntask for researchers using non-imaging hyperspectral data. It is\\nbecause of spectral reflectance similarity between crops. In this\\nresearch work we have discriminated between four crops wheat,\\njowar, bajara and maize. We have tried to overcome the problems\\nwhich have been faced my researchers. Initially by visual\\nanalysis we have selected 22 reflectance band which shows the\\nabsorption property of particular molecules and classification\\ntechnique is applied, but it has given us very poor result of\\nclassification. We observed only 24% classification accuracy. So\\nwe considered nine vegetation indices along with spectral bands\\nand achieved better classification accuracy. ASD FieldSpec 4\\nSpectroradiometer device is used for capturing spectral\\nreflectance data. We calculated nine different vegetation indices\\nand some selective reflectance bands are used for crop\\nclassification. We have used Support Vector Machine (SVM) for\\nclassification.\",\"PeriodicalId\":23601,\"journal\":{\"name\":\"VOLUME-8 ISSUE-10, AUGUST 2019, REGULAR ISSUE\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VOLUME-8 ISSUE-10, AUGUST 2019, REGULAR ISSUE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35940/ijeat.e2802.0610521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VOLUME-8 ISSUE-10, AUGUST 2019, REGULAR ISSUE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35940/ijeat.e2802.0610521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于使用非成像高光谱数据的研究人员来说,作物类型识别仍然是一项非常具有挑战性的任务。这是因为作物之间的光谱反射率相似。在这项研究中,我们对四种作物进行了区分:小麦、乔瓦尔、巴哈拉和玉米。我们试图克服我的研究人员所面临的问题。我们最初通过视觉分析选择了22个反映特定分子吸收特性的反射带,并应用了分类技术,但分类结果很差。我们观察到只有24%的分类准确率。我们考虑了9种植被指数和光谱波段,获得了较好的分类精度。ASD fieldspec4光谱辐射计设备用于捕获光谱反射率数据。我们计算了9种不同的植被指数,并使用一些选择性反射带进行作物分类。我们使用支持向量机(SVM)进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crop Discrimination using Non-Imaging Hyperspectral Data
Crop type discrimination is still very challenging task for researchers using non-imaging hyperspectral data. It is because of spectral reflectance similarity between crops. In this research work we have discriminated between four crops wheat, jowar, bajara and maize. We have tried to overcome the problems which have been faced my researchers. Initially by visual analysis we have selected 22 reflectance band which shows the absorption property of particular molecules and classification technique is applied, but it has given us very poor result of classification. We observed only 24% classification accuracy. So we considered nine vegetation indices along with spectral bands and achieved better classification accuracy. ASD FieldSpec 4 Spectroradiometer device is used for capturing spectral reflectance data. We calculated nine different vegetation indices and some selective reflectance bands are used for crop classification. We have used Support Vector Machine (SVM) for classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信