{"title":"利用还原糖绿色合成氧化石墨烯","authors":"A. Rashid, Husna Rosli","doi":"10.4028/www.scientific.net/NHC.31.17","DOIUrl":null,"url":null,"abstract":"Graphene is a promising candidate for a broad range application in many fields and it has attracted a lot of attention from the researchers due to its unique properties. The involvement of toxic chemicals in synthesisation process is quite worrying as they release toxic gases and cause an explosion. Hence, this research reports a facile and safer method where the improved Hummer’s method was used to synthesize graphene oxide. Chemical reagent reduction method was implemented to synthesize reduced graphene oxide where glucose, fructose and sucrose were used as the reducing agents. The structural and optical properties of GO and rGO was determined by using Fourier Transform Infrared (FTIR) and ultraviolet-visible (UV-Vis) spectrometer. The FTIR analysis of the films showed the existence of a large amount of oxygen-containing functional groups in GO compared to G-rGO, F-rGO and S-rGO. Furthermore, the UV-Vis analysis of GO showed the presence of an absorption peak at 230 nm and also a shoulder at 301 nm. The reduction of GO by sucrose caused a red shift from 230 nm to 260 nm while the reduction of GO by glucose and fructose caused a redshift to 268 nm. By referring to Tauc’s plot method, it was observed that the optical band gaps of GO, G-rGO, F-rGO and S-rGO were 4.26 eV, 3.32 eV, 3.38 eV and 3.66 eV, respectively.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"17 1","pages":"17 - 24"},"PeriodicalIF":0.4000,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green Synthesis of Reduced Graphene Oxide by Using Reducing Sugars\",\"authors\":\"A. Rashid, Husna Rosli\",\"doi\":\"10.4028/www.scientific.net/NHC.31.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene is a promising candidate for a broad range application in many fields and it has attracted a lot of attention from the researchers due to its unique properties. The involvement of toxic chemicals in synthesisation process is quite worrying as they release toxic gases and cause an explosion. Hence, this research reports a facile and safer method where the improved Hummer’s method was used to synthesize graphene oxide. Chemical reagent reduction method was implemented to synthesize reduced graphene oxide where glucose, fructose and sucrose were used as the reducing agents. The structural and optical properties of GO and rGO was determined by using Fourier Transform Infrared (FTIR) and ultraviolet-visible (UV-Vis) spectrometer. The FTIR analysis of the films showed the existence of a large amount of oxygen-containing functional groups in GO compared to G-rGO, F-rGO and S-rGO. Furthermore, the UV-Vis analysis of GO showed the presence of an absorption peak at 230 nm and also a shoulder at 301 nm. The reduction of GO by sucrose caused a red shift from 230 nm to 260 nm while the reduction of GO by glucose and fructose caused a redshift to 268 nm. By referring to Tauc’s plot method, it was observed that the optical band gaps of GO, G-rGO, F-rGO and S-rGO were 4.26 eV, 3.32 eV, 3.38 eV and 3.66 eV, respectively.\",\"PeriodicalId\":18861,\"journal\":{\"name\":\"Nano Hybrids and Composites\",\"volume\":\"17 1\",\"pages\":\"17 - 24\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Hybrids and Composites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/NHC.31.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Hybrids and Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/NHC.31.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Green Synthesis of Reduced Graphene Oxide by Using Reducing Sugars
Graphene is a promising candidate for a broad range application in many fields and it has attracted a lot of attention from the researchers due to its unique properties. The involvement of toxic chemicals in synthesisation process is quite worrying as they release toxic gases and cause an explosion. Hence, this research reports a facile and safer method where the improved Hummer’s method was used to synthesize graphene oxide. Chemical reagent reduction method was implemented to synthesize reduced graphene oxide where glucose, fructose and sucrose were used as the reducing agents. The structural and optical properties of GO and rGO was determined by using Fourier Transform Infrared (FTIR) and ultraviolet-visible (UV-Vis) spectrometer. The FTIR analysis of the films showed the existence of a large amount of oxygen-containing functional groups in GO compared to G-rGO, F-rGO and S-rGO. Furthermore, the UV-Vis analysis of GO showed the presence of an absorption peak at 230 nm and also a shoulder at 301 nm. The reduction of GO by sucrose caused a red shift from 230 nm to 260 nm while the reduction of GO by glucose and fructose caused a redshift to 268 nm. By referring to Tauc’s plot method, it was observed that the optical band gaps of GO, G-rGO, F-rGO and S-rGO were 4.26 eV, 3.32 eV, 3.38 eV and 3.66 eV, respectively.