{"title":"微电子学与分子生物学和神经生物学相结合","authors":"P. Fromherz","doi":"10.1109/IEDM.2001.979510","DOIUrl":null,"url":null,"abstract":"The electrical interfacing of nerve cells and semiconductor microstructures is considered. The coupling of electron conducting silicon with ion conducting neurons relies on a close contact of the chip and the cell membrane with its ion channels. Excitation of neuronal activity is achieved by capacitive interaction with the channels and recording by the response of transistors to open channels. Integrated neuroelectronic systems are obtained by outgrowth of a neuronal net on silicon and by two-way interfacing of the neuronal and electronic components.","PeriodicalId":13825,"journal":{"name":"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)","volume":"16 1","pages":"16.1.1-16.1.4"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Microelectronics meets molecular and neurobiology\",\"authors\":\"P. Fromherz\",\"doi\":\"10.1109/IEDM.2001.979510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrical interfacing of nerve cells and semiconductor microstructures is considered. The coupling of electron conducting silicon with ion conducting neurons relies on a close contact of the chip and the cell membrane with its ion channels. Excitation of neuronal activity is achieved by capacitive interaction with the channels and recording by the response of transistors to open channels. Integrated neuroelectronic systems are obtained by outgrowth of a neuronal net on silicon and by two-way interfacing of the neuronal and electronic components.\",\"PeriodicalId\":13825,\"journal\":{\"name\":\"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)\",\"volume\":\"16 1\",\"pages\":\"16.1.1-16.1.4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2001.979510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2001.979510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The electrical interfacing of nerve cells and semiconductor microstructures is considered. The coupling of electron conducting silicon with ion conducting neurons relies on a close contact of the chip and the cell membrane with its ion channels. Excitation of neuronal activity is achieved by capacitive interaction with the channels and recording by the response of transistors to open channels. Integrated neuroelectronic systems are obtained by outgrowth of a neuronal net on silicon and by two-way interfacing of the neuronal and electronic components.