前缀计算和加法的最优深度电路

C. Yeh, Emmanouel Varvarigos, B. Parhami
{"title":"前缀计算和加法的最优深度电路","authors":"C. Yeh, Emmanouel Varvarigos, B. Parhami","doi":"10.1109/ACSSC.2000.911212","DOIUrl":null,"url":null,"abstract":"Addition and prefix computation are among the most fundamental problems in arithmetic and algebraic computation. In this paper, we present efficient circuits for performing prefix computation and addition with small depth and size and flexible fan-in (i.e., the maximum fan-in can be selected as a small constant or a larger constant/nonconstant number). In particular, we show that any prefix operation of n inputs can be computed using a circuit of fan-in k, depth log/sub k/n+o(log/sub k/n)+O(1), gate complexity O(n), and edge complexity O(n log/sup d-1**...*d-1/n), for any constant integer d. We show that the sum of two n-bit numbers can be found using an AND-OR circuit of fan-in k, depth log/sub k/n+o(log/sub k/n)+O(1), and edge complexity O(n(log/sup d-1**...*d-1/n)/sup 2/), for any constant integer d. In particular, the depths of our circuits for prefix computation and addition are optimal within a factor of 1+o(1), for any fan-in k=n/sup o(1)/.","PeriodicalId":10581,"journal":{"name":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","volume":"5 1","pages":"1349-1353 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optimal-depth circuits for prefix computation and addition\",\"authors\":\"C. Yeh, Emmanouel Varvarigos, B. Parhami\",\"doi\":\"10.1109/ACSSC.2000.911212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Addition and prefix computation are among the most fundamental problems in arithmetic and algebraic computation. In this paper, we present efficient circuits for performing prefix computation and addition with small depth and size and flexible fan-in (i.e., the maximum fan-in can be selected as a small constant or a larger constant/nonconstant number). In particular, we show that any prefix operation of n inputs can be computed using a circuit of fan-in k, depth log/sub k/n+o(log/sub k/n)+O(1), gate complexity O(n), and edge complexity O(n log/sup d-1**...*d-1/n), for any constant integer d. We show that the sum of two n-bit numbers can be found using an AND-OR circuit of fan-in k, depth log/sub k/n+o(log/sub k/n)+O(1), and edge complexity O(n(log/sup d-1**...*d-1/n)/sup 2/), for any constant integer d. In particular, the depths of our circuits for prefix computation and addition are optimal within a factor of 1+o(1), for any fan-in k=n/sup o(1)/.\",\"PeriodicalId\":10581,\"journal\":{\"name\":\"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)\",\"volume\":\"5 1\",\"pages\":\"1349-1353 vol.2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2000.911212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2000.911212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

加法和前缀计算是算术和代数计算中最基本的问题之一。在本文中,我们提出了有效的电路来执行前缀计算和加法的小深度和尺寸和灵活的扇入(即,最大扇入可以选择一个小常数或一个较大的常数/非常数数)。特别是,我们表明,任何前缀操作n的输入可以计算使用电路的扇入k,深度日志/ sub k / n + o (log / sub k / n) + o(1),门复杂度o (n),和边缘的复杂性o (n日志/一口d 1 * *…* d 1 / n),对于任何常数整数d。我们证明两个n位数字的总和可以发现使用一个与或电路的扇入k,深度日志/ sub k / n + o (log / sub k / n) + o(1),和边缘的复杂性o (n(日志/一口d 1 * *…* d 1 / n) /一口2 /),对于任何的整型常量d。特别是,对于任何风扇输入k=n/sup o(1)/,我们的前缀计算和加法电路的深度在1+o(1)的范围内是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal-depth circuits for prefix computation and addition
Addition and prefix computation are among the most fundamental problems in arithmetic and algebraic computation. In this paper, we present efficient circuits for performing prefix computation and addition with small depth and size and flexible fan-in (i.e., the maximum fan-in can be selected as a small constant or a larger constant/nonconstant number). In particular, we show that any prefix operation of n inputs can be computed using a circuit of fan-in k, depth log/sub k/n+o(log/sub k/n)+O(1), gate complexity O(n), and edge complexity O(n log/sup d-1**...*d-1/n), for any constant integer d. We show that the sum of two n-bit numbers can be found using an AND-OR circuit of fan-in k, depth log/sub k/n+o(log/sub k/n)+O(1), and edge complexity O(n(log/sup d-1**...*d-1/n)/sup 2/), for any constant integer d. In particular, the depths of our circuits for prefix computation and addition are optimal within a factor of 1+o(1), for any fan-in k=n/sup o(1)/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信