厚针孔伽马射线诊断系统的性能评价

Hongwei Xie, Jinchuan Chen, Linbo Li, Q. Yi
{"title":"厚针孔伽马射线诊断系统的性能评价","authors":"Hongwei Xie, Jinchuan Chen, Linbo Li, Q. Yi","doi":"10.4236/jasmi.2018.83003","DOIUrl":null,"url":null,"abstract":"The diagnostic methods for the profile of the radiation source were estab-lished at first based on the pinhole imaging principle. In this paper, the relationships among various parameters of the gamma-rays crammer such as the modulation transfer function (MTF), the noise power spectrum (NPS), the signal-noise ratio (SNR) and the detective quantum efficiency (DQE) are developed and studied experimentally on the cobalt radiation source. The image diagnostic system is consisting with rays-fluorescence convertor (YAG crystal), optical imaging system, MCP image intensifier, CCD camera and other devices. The spatial resolution of the modulation transfer function (MTF) at 10% intensity was measured as 1 lp/mm by knife-edge method. The quantum of the measurement system is about 150 under weak radiation condition due to the single particle detection efficiency of the system. The dynamic range was inferred preliminarily as about 437. The required radiation intensity was calculated using the experiment result for the (SNR) = 1, 5, 10, respectively. The theoretical investigation results show that the radiation image with (SNR) = 1 can be only obtained when the pinhole diameter is 0.7 mm, object distance and image distance are both 200 cm, and the radiation intensity is about 1.0 × 1012 Sr-1·cm-2.","PeriodicalId":14932,"journal":{"name":"Journal of Analytical Sciences, Methods and Instrumentation","volume":"47 1","pages":"25-36"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Evaluation of the Thick Pinhole Gamma Rays Diagnostic System\",\"authors\":\"Hongwei Xie, Jinchuan Chen, Linbo Li, Q. Yi\",\"doi\":\"10.4236/jasmi.2018.83003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diagnostic methods for the profile of the radiation source were estab-lished at first based on the pinhole imaging principle. In this paper, the relationships among various parameters of the gamma-rays crammer such as the modulation transfer function (MTF), the noise power spectrum (NPS), the signal-noise ratio (SNR) and the detective quantum efficiency (DQE) are developed and studied experimentally on the cobalt radiation source. The image diagnostic system is consisting with rays-fluorescence convertor (YAG crystal), optical imaging system, MCP image intensifier, CCD camera and other devices. The spatial resolution of the modulation transfer function (MTF) at 10% intensity was measured as 1 lp/mm by knife-edge method. The quantum of the measurement system is about 150 under weak radiation condition due to the single particle detection efficiency of the system. The dynamic range was inferred preliminarily as about 437. The required radiation intensity was calculated using the experiment result for the (SNR) = 1, 5, 10, respectively. The theoretical investigation results show that the radiation image with (SNR) = 1 can be only obtained when the pinhole diameter is 0.7 mm, object distance and image distance are both 200 cm, and the radiation intensity is about 1.0 × 1012 Sr-1·cm-2.\",\"PeriodicalId\":14932,\"journal\":{\"name\":\"Journal of Analytical Sciences, Methods and Instrumentation\",\"volume\":\"47 1\",\"pages\":\"25-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Sciences, Methods and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/jasmi.2018.83003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Sciences, Methods and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jasmi.2018.83003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

首先建立了基于针孔成像原理的辐射源轮廓诊断方法。本文在钴辐射源上建立了调制传递函数(MTF)、噪声功率谱(NPS)、信噪比(SNR)和探测量子效率(DQE)等伽马射线填充器各参数之间的关系,并进行了实验研究。图像诊断系统由射线荧光转换器(YAG晶体)、光学成像系统、MCP图像增强器、CCD相机等器件组成。采用刀口法测量10%强度下调制传递函数(MTF)的空间分辨率为1 lp/mm。在弱辐射条件下,由于系统的单粒子检测效率,测量系统的量子量约为150。动态范围初步推断为437左右。根据(信噪比)分别为1、5、10时的实验结果计算所需辐射强度。理论研究结果表明,当针孔直径为0.7 mm,物距和像距均为200 cm,辐射强度约为1.0 × 1012 Sr-1·cm-2时,才能获得信噪比为1的辐射图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Evaluation of the Thick Pinhole Gamma Rays Diagnostic System
The diagnostic methods for the profile of the radiation source were estab-lished at first based on the pinhole imaging principle. In this paper, the relationships among various parameters of the gamma-rays crammer such as the modulation transfer function (MTF), the noise power spectrum (NPS), the signal-noise ratio (SNR) and the detective quantum efficiency (DQE) are developed and studied experimentally on the cobalt radiation source. The image diagnostic system is consisting with rays-fluorescence convertor (YAG crystal), optical imaging system, MCP image intensifier, CCD camera and other devices. The spatial resolution of the modulation transfer function (MTF) at 10% intensity was measured as 1 lp/mm by knife-edge method. The quantum of the measurement system is about 150 under weak radiation condition due to the single particle detection efficiency of the system. The dynamic range was inferred preliminarily as about 437. The required radiation intensity was calculated using the experiment result for the (SNR) = 1, 5, 10, respectively. The theoretical investigation results show that the radiation image with (SNR) = 1 can be only obtained when the pinhole diameter is 0.7 mm, object distance and image distance are both 200 cm, and the radiation intensity is about 1.0 × 1012 Sr-1·cm-2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信