Kazuki Moriyasu, Takashi Ichinose, Akane Nakahata, Mitsuru Tanaka, T. Matsui, S. Furuya
{"title":"二肽Ile-Tyr和Ser-Tyr对小鼠脑干儿茶酚胺代谢有明显影响","authors":"Kazuki Moriyasu, Takashi Ichinose, Akane Nakahata, Mitsuru Tanaka, T. Matsui, S. Furuya","doi":"10.1155/2016/6020786","DOIUrl":null,"url":null,"abstract":"Catecholamine synthesis and transmission in the brain are influenced by the availability of Tyr in the body. In this study, we compared the effects of oral administration of Tyr-containing dipeptides Ile-Tyr, Ser-Tyr, and Tyr-Pro with Tyr alone on catecholamine metabolism in the mouse brainstem. Among these dipeptides, Ile-Tyr administration led to increases in dopamine, the dopamine metabolites homovanillic acid, and 3,4-dihydroxyphenylacetic acid, compared to administration of Ser-Tyr, Tyr-Pro, or Tyr alone. In comparison, administration of Ser-Tyr induced significantly increasing noradrenaline turnover, while Tyr-Pro administration suppressed dopamine turnover. Therefore, oral administration of Ile-Tyr, Ser-Tyr, and Tyr-Pro differentially affected metabolism of dopamine and noradrenaline. These observations strongly suggest that Tyr-containing dipeptides exert distinct effects on catecholamine metabolism in the brainstem when ingested orally.","PeriodicalId":14239,"journal":{"name":"International Journal of Peptides","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The Dipeptides Ile-Tyr and Ser-Tyr Exert Distinct Effects on Catecholamine Metabolism in the Mouse Brainstem\",\"authors\":\"Kazuki Moriyasu, Takashi Ichinose, Akane Nakahata, Mitsuru Tanaka, T. Matsui, S. Furuya\",\"doi\":\"10.1155/2016/6020786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Catecholamine synthesis and transmission in the brain are influenced by the availability of Tyr in the body. In this study, we compared the effects of oral administration of Tyr-containing dipeptides Ile-Tyr, Ser-Tyr, and Tyr-Pro with Tyr alone on catecholamine metabolism in the mouse brainstem. Among these dipeptides, Ile-Tyr administration led to increases in dopamine, the dopamine metabolites homovanillic acid, and 3,4-dihydroxyphenylacetic acid, compared to administration of Ser-Tyr, Tyr-Pro, or Tyr alone. In comparison, administration of Ser-Tyr induced significantly increasing noradrenaline turnover, while Tyr-Pro administration suppressed dopamine turnover. Therefore, oral administration of Ile-Tyr, Ser-Tyr, and Tyr-Pro differentially affected metabolism of dopamine and noradrenaline. These observations strongly suggest that Tyr-containing dipeptides exert distinct effects on catecholamine metabolism in the brainstem when ingested orally.\",\"PeriodicalId\":14239,\"journal\":{\"name\":\"International Journal of Peptides\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Peptides\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/6020786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Peptides","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/6020786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Dipeptides Ile-Tyr and Ser-Tyr Exert Distinct Effects on Catecholamine Metabolism in the Mouse Brainstem
Catecholamine synthesis and transmission in the brain are influenced by the availability of Tyr in the body. In this study, we compared the effects of oral administration of Tyr-containing dipeptides Ile-Tyr, Ser-Tyr, and Tyr-Pro with Tyr alone on catecholamine metabolism in the mouse brainstem. Among these dipeptides, Ile-Tyr administration led to increases in dopamine, the dopamine metabolites homovanillic acid, and 3,4-dihydroxyphenylacetic acid, compared to administration of Ser-Tyr, Tyr-Pro, or Tyr alone. In comparison, administration of Ser-Tyr induced significantly increasing noradrenaline turnover, while Tyr-Pro administration suppressed dopamine turnover. Therefore, oral administration of Ile-Tyr, Ser-Tyr, and Tyr-Pro differentially affected metabolism of dopamine and noradrenaline. These observations strongly suggest that Tyr-containing dipeptides exert distinct effects on catecholamine metabolism in the brainstem when ingested orally.