纳米级晶体管中的耗散量子输运

Jing Guo
{"title":"纳米级晶体管中的耗散量子输运","authors":"Jing Guo","doi":"10.1109/DRC.2012.6256945","DOIUrl":null,"url":null,"abstract":"We review our efforts on using numerical simulations to study essential physics of dissipative quantum transport in nanoscale field-effect transistors (FETs). Three types of nanoscale transistors are modeled as examples, (i) graphene nanoribbon (GNR) FETs with a quasi-one-dimensional (1D) channel, (ii) graphene FETs with a two-dimensional channel, and (iii) tunneling FETs with a strained GNR channel. In a quasi-1D channel, inelastic phonon scattering can increase the ballisticity at high drain biases considerably and partly offset the negative effect due to elastic scattering. Interplay between dissipative scattering processes and quantum phenomena, such as Klein tunneling in a graphene FET and band-to-band tunneling in a tunneling FET, play an important role on device characteristics. Coupling between far-from-equilibrium phonons and electrons and transport in the strong electron-phonon coupling regime remain as issues for further study.","PeriodicalId":6808,"journal":{"name":"70th Device Research Conference","volume":"59 1","pages":"229-230"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dissipative quantum transport in nanoscale transistors\",\"authors\":\"Jing Guo\",\"doi\":\"10.1109/DRC.2012.6256945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We review our efforts on using numerical simulations to study essential physics of dissipative quantum transport in nanoscale field-effect transistors (FETs). Three types of nanoscale transistors are modeled as examples, (i) graphene nanoribbon (GNR) FETs with a quasi-one-dimensional (1D) channel, (ii) graphene FETs with a two-dimensional channel, and (iii) tunneling FETs with a strained GNR channel. In a quasi-1D channel, inelastic phonon scattering can increase the ballisticity at high drain biases considerably and partly offset the negative effect due to elastic scattering. Interplay between dissipative scattering processes and quantum phenomena, such as Klein tunneling in a graphene FET and band-to-band tunneling in a tunneling FET, play an important role on device characteristics. Coupling between far-from-equilibrium phonons and electrons and transport in the strong electron-phonon coupling regime remain as issues for further study.\",\"PeriodicalId\":6808,\"journal\":{\"name\":\"70th Device Research Conference\",\"volume\":\"59 1\",\"pages\":\"229-230\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"70th Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2012.6256945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"70th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2012.6256945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了利用数值模拟方法研究纳米场效应晶体管中耗散量子输运的基本物理特性的研究进展。本文以三种类型的纳米级晶体管为例进行了建模,(i)具有准一维(1D)沟道的石墨烯纳米带(GNR)场效应管,(ii)具有二维沟道的石墨烯纳米带场效应管,以及(iii)具有应变GNR沟道的隧道效应管。在准一维通道中,非弹性声子散射可以显著提高高漏偏置下的弹道性能,并部分抵消弹性散射带来的负面影响。耗散散射过程和量子现象之间的相互作用,如石墨烯场效应管中的克莱因隧道效应和隧道场效应管中的带间隧道效应,对器件特性起着重要作用。远平衡声子与电子之间的耦合以及强电子-声子耦合中的输运仍是有待进一步研究的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dissipative quantum transport in nanoscale transistors
We review our efforts on using numerical simulations to study essential physics of dissipative quantum transport in nanoscale field-effect transistors (FETs). Three types of nanoscale transistors are modeled as examples, (i) graphene nanoribbon (GNR) FETs with a quasi-one-dimensional (1D) channel, (ii) graphene FETs with a two-dimensional channel, and (iii) tunneling FETs with a strained GNR channel. In a quasi-1D channel, inelastic phonon scattering can increase the ballisticity at high drain biases considerably and partly offset the negative effect due to elastic scattering. Interplay between dissipative scattering processes and quantum phenomena, such as Klein tunneling in a graphene FET and band-to-band tunneling in a tunneling FET, play an important role on device characteristics. Coupling between far-from-equilibrium phonons and electrons and transport in the strong electron-phonon coupling regime remain as issues for further study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信