Matteo Stoppa, P. Ros, M. Crepaldi, A. Chiolerio, D. Demarchi
{"title":"用于轨道目标接触事件监测的准数字压力/触摸传感器样机","authors":"Matteo Stoppa, P. Ros, M. Crepaldi, A. Chiolerio, D. Demarchi","doi":"10.1109/ISCAS.2016.7539185","DOIUrl":null,"url":null,"abstract":"This paper presents a sensorized belt with four fully integrated pressure-touch sensors. We propose a very-low complexity sensor able to measure a pressure variation (up to 4 MPa) and to identify with accuracy a contact event at around 10 kPa. The overall pressure/touch sensor integrates a transducer, based on piezo capacitive material, coupled with a read-out circuit designed around a ring-oscillator. This converts the capacitance variation of the transducer into a quasi-digital signal characterized by a frequency range of 36.3-270 kHz with a very low standard deviation (2.3 kHz) and a sensitivity of 2.2 Hz/Pa. The tight integration of the electronics with the transducer results in a very compact all-in-one sensor system (overall size is 20 mm × 20 mm × 10 mm). Further, a major benefit of a low complexity design is the low power consumption, measured to be ~370 μW. Based on a quasi-digital approach (event-driven), the system is well suited for impulse-based wireless communication.","PeriodicalId":6546,"journal":{"name":"2016 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"25 1","pages":"2843-2846"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A quasi-digital pressure/touch sensor prototype for orbital targets contact event monitoring\",\"authors\":\"Matteo Stoppa, P. Ros, M. Crepaldi, A. Chiolerio, D. Demarchi\",\"doi\":\"10.1109/ISCAS.2016.7539185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a sensorized belt with four fully integrated pressure-touch sensors. We propose a very-low complexity sensor able to measure a pressure variation (up to 4 MPa) and to identify with accuracy a contact event at around 10 kPa. The overall pressure/touch sensor integrates a transducer, based on piezo capacitive material, coupled with a read-out circuit designed around a ring-oscillator. This converts the capacitance variation of the transducer into a quasi-digital signal characterized by a frequency range of 36.3-270 kHz with a very low standard deviation (2.3 kHz) and a sensitivity of 2.2 Hz/Pa. The tight integration of the electronics with the transducer results in a very compact all-in-one sensor system (overall size is 20 mm × 20 mm × 10 mm). Further, a major benefit of a low complexity design is the low power consumption, measured to be ~370 μW. Based on a quasi-digital approach (event-driven), the system is well suited for impulse-based wireless communication.\",\"PeriodicalId\":6546,\"journal\":{\"name\":\"2016 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"25 1\",\"pages\":\"2843-2846\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2016.7539185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2016.7539185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A quasi-digital pressure/touch sensor prototype for orbital targets contact event monitoring
This paper presents a sensorized belt with four fully integrated pressure-touch sensors. We propose a very-low complexity sensor able to measure a pressure variation (up to 4 MPa) and to identify with accuracy a contact event at around 10 kPa. The overall pressure/touch sensor integrates a transducer, based on piezo capacitive material, coupled with a read-out circuit designed around a ring-oscillator. This converts the capacitance variation of the transducer into a quasi-digital signal characterized by a frequency range of 36.3-270 kHz with a very low standard deviation (2.3 kHz) and a sensitivity of 2.2 Hz/Pa. The tight integration of the electronics with the transducer results in a very compact all-in-one sensor system (overall size is 20 mm × 20 mm × 10 mm). Further, a major benefit of a low complexity design is the low power consumption, measured to be ~370 μW. Based on a quasi-digital approach (event-driven), the system is well suited for impulse-based wireless communication.