紧空间的逆极限

A.H. Stone
{"title":"紧空间的逆极限","authors":"A.H. Stone","doi":"10.1016/0016-660X(79)90008-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper gives conditions under which the inverse limit of a system of compact (but non-Hausdorff) spaces will be non-empty, or compact, or hereditarily compact. The main result (Theorems 3 and 5) is that, if the spaces are compact, <em>T</em><sub>0</sub> and non-empty and the maps are closed and continuous, then the inverse limit is compact and non-empty (and, trivially, <em>T</em><sub>0</sub>). Simple examples are given to show that the results are reasonably sharp.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"10 2","pages":"Pages 203-211"},"PeriodicalIF":0.0000,"publicationDate":"1979-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(79)90008-4","citationCount":"30","resultStr":"{\"title\":\"Inverse limits of compact spaces\",\"authors\":\"A.H. Stone\",\"doi\":\"10.1016/0016-660X(79)90008-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper gives conditions under which the inverse limit of a system of compact (but non-Hausdorff) spaces will be non-empty, or compact, or hereditarily compact. The main result (Theorems 3 and 5) is that, if the spaces are compact, <em>T</em><sub>0</sub> and non-empty and the maps are closed and continuous, then the inverse limit is compact and non-empty (and, trivially, <em>T</em><sub>0</sub>). Simple examples are given to show that the results are reasonably sharp.</p></div>\",\"PeriodicalId\":100574,\"journal\":{\"name\":\"General Topology and its Applications\",\"volume\":\"10 2\",\"pages\":\"Pages 203-211\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1979-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0016-660X(79)90008-4\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Topology and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0016660X79900084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X79900084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

本文给出了紧(但非hausdorff)空间系统的逆极限是非空的、紧的或遗传紧的条件。主要的结果(定理3和定理5)是,如果空间是紧致的,T0和非空的,映射是闭合的和连续的,那么逆极限是紧致的和非空的(并且,平凡的,T0)。给出了一些简单的例子,表明结果是相当清晰的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse limits of compact spaces

This paper gives conditions under which the inverse limit of a system of compact (but non-Hausdorff) spaces will be non-empty, or compact, or hereditarily compact. The main result (Theorems 3 and 5) is that, if the spaces are compact, T0 and non-empty and the maps are closed and continuous, then the inverse limit is compact and non-empty (and, trivially, T0). Simple examples are given to show that the results are reasonably sharp.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信