Bothaina Saadi, S. Rahmane, Mouloud Laidoudi, Aicha Kater
{"title":"采用气喷法制备了不同化学前驱物浓度对Cr2O3薄膜物理性能的影响","authors":"Bothaina Saadi, S. Rahmane, Mouloud Laidoudi, Aicha Kater","doi":"10.3233/mgc-210137","DOIUrl":null,"url":null,"abstract":"In this paper, Cr2O3 thin films were synthesized successfully on glass substrates at 450 °C using a simple and low-cost homemade pneumatic spray system (SP) using two different precursors: chromium chloride and chromium nitrate. A systematic study of the influence of concentration of each precursor used for deposition on the structural, morphological, optical and electrical properties has investigated. The XRDresults show that the Cr2O3 films prepared with chromium chloride are polycrystalline with rhombohedral structure and those prepared with low concentration of chromium nitrate have a poor crystallinity. Peaks associated with Cr and O elements are present in EDS analysis that confirm the composition of the films and SEM images revealed a uniform, homogeneous and well covered surface.The measured electrical conductivity was found in the order of 5(Ω.cm)–1. The average transmittance of the films deposited from chromium nitrate is in the range of 60 % and for the films deposited from chromium chloride, it reaches75 % in the visible region. These electrical and optical properties of Cr2O3 thin film ascribed to its wide band gap, are indeed required for optoelectronic devices especially for solar cell window.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":"6 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of concentration of different chemical precursors on the physical properties of Cr2O3 thin films elaborated via pneumatic spray\",\"authors\":\"Bothaina Saadi, S. Rahmane, Mouloud Laidoudi, Aicha Kater\",\"doi\":\"10.3233/mgc-210137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, Cr2O3 thin films were synthesized successfully on glass substrates at 450 °C using a simple and low-cost homemade pneumatic spray system (SP) using two different precursors: chromium chloride and chromium nitrate. A systematic study of the influence of concentration of each precursor used for deposition on the structural, morphological, optical and electrical properties has investigated. The XRDresults show that the Cr2O3 films prepared with chromium chloride are polycrystalline with rhombohedral structure and those prepared with low concentration of chromium nitrate have a poor crystallinity. Peaks associated with Cr and O elements are present in EDS analysis that confirm the composition of the films and SEM images revealed a uniform, homogeneous and well covered surface.The measured electrical conductivity was found in the order of 5(Ω.cm)–1. The average transmittance of the films deposited from chromium nitrate is in the range of 60 % and for the films deposited from chromium chloride, it reaches75 % in the visible region. These electrical and optical properties of Cr2O3 thin film ascribed to its wide band gap, are indeed required for optoelectronic devices especially for solar cell window.\",\"PeriodicalId\":18027,\"journal\":{\"name\":\"Main Group Chemistry\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Main Group Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3233/mgc-210137\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3233/mgc-210137","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Influence of concentration of different chemical precursors on the physical properties of Cr2O3 thin films elaborated via pneumatic spray
In this paper, Cr2O3 thin films were synthesized successfully on glass substrates at 450 °C using a simple and low-cost homemade pneumatic spray system (SP) using two different precursors: chromium chloride and chromium nitrate. A systematic study of the influence of concentration of each precursor used for deposition on the structural, morphological, optical and electrical properties has investigated. The XRDresults show that the Cr2O3 films prepared with chromium chloride are polycrystalline with rhombohedral structure and those prepared with low concentration of chromium nitrate have a poor crystallinity. Peaks associated with Cr and O elements are present in EDS analysis that confirm the composition of the films and SEM images revealed a uniform, homogeneous and well covered surface.The measured electrical conductivity was found in the order of 5(Ω.cm)–1. The average transmittance of the films deposited from chromium nitrate is in the range of 60 % and for the films deposited from chromium chloride, it reaches75 % in the visible region. These electrical and optical properties of Cr2O3 thin film ascribed to its wide band gap, are indeed required for optoelectronic devices especially for solar cell window.
期刊介绍:
Main Group Chemistry is intended to be a primary resource for all chemistry, engineering, biological, and materials researchers in both academia and in industry with an interest in the elements from the groups 1, 2, 12–18, lanthanides and actinides. The journal is committed to maintaining a high standard for its publications. This will be ensured by a rigorous peer-review process with most articles being reviewed by at least one editorial board member. Additionally, all manuscripts will be proofread and corrected by a dedicated copy editor located at the University of Kentucky.