合理调整聚合膜相分离以优化全天被动辐射冷却器

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xuan Cai, Yutao Wang, Yumin Luo, Jingyu Xu, Liang Zhao, Yiyi Lin, Yin Ning, Jizhuang Wang*, Liang Gao* and Dan Li*, 
{"title":"合理调整聚合膜相分离以优化全天被动辐射冷却器","authors":"Xuan Cai,&nbsp;Yutao Wang,&nbsp;Yumin Luo,&nbsp;Jingyu Xu,&nbsp;Liang Zhao,&nbsp;Yiyi Lin,&nbsp;Yin Ning,&nbsp;Jizhuang Wang*,&nbsp;Liang Gao* and Dan Li*,&nbsp;","doi":"10.1021/acsami.2c05943","DOIUrl":null,"url":null,"abstract":"<p >The all-day passive radiative cooler has emerged as one of the state-of-the-art energy-saving cooling tool kits but routinely suffers from limited processability, high cost, and complicated fabrication processes, which impede large-scale applications. To address these challenges, this work exploits a polymer-based passive radiative cooler with optimized turbidity, reconfigurability, and recyclability. These cooling membranes are fabricated <i>via</i> selective condensation of octyl side chain-modified polyvinyl alcohol through a non-solvent-induced phase separation method. The rational tuning over spatial organization and distribution of the air–polymer interface renders optimized bright whiteness with solar reflectance at 96%. Meanwhile, the abundant ?C–O–C– bonds endow such membranes with infrared thermal emittance over 90%. The optimized membrane realizes a subambient cooling of ~5.7 °C with an average cooling power of ~81 W m<sup>–2</sup> under a solar intensity of ~528 W m<sup>–2</sup>. Furthermore, the supramolecule nature of the developed passive radiative cooling membrane bears enhanced shape malleability and recyclability, substantially enhancing its conformability to the complex geometry and extending its life for an eco-friendly society.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"14 23","pages":"27222–27232"},"PeriodicalIF":8.2000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Rationally Tuning Phase Separation in Polymeric Membranes toward Optimized All-day Passive Radiative Coolers\",\"authors\":\"Xuan Cai,&nbsp;Yutao Wang,&nbsp;Yumin Luo,&nbsp;Jingyu Xu,&nbsp;Liang Zhao,&nbsp;Yiyi Lin,&nbsp;Yin Ning,&nbsp;Jizhuang Wang*,&nbsp;Liang Gao* and Dan Li*,&nbsp;\",\"doi\":\"10.1021/acsami.2c05943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The all-day passive radiative cooler has emerged as one of the state-of-the-art energy-saving cooling tool kits but routinely suffers from limited processability, high cost, and complicated fabrication processes, which impede large-scale applications. To address these challenges, this work exploits a polymer-based passive radiative cooler with optimized turbidity, reconfigurability, and recyclability. These cooling membranes are fabricated <i>via</i> selective condensation of octyl side chain-modified polyvinyl alcohol through a non-solvent-induced phase separation method. The rational tuning over spatial organization and distribution of the air–polymer interface renders optimized bright whiteness with solar reflectance at 96%. Meanwhile, the abundant ?C–O–C– bonds endow such membranes with infrared thermal emittance over 90%. The optimized membrane realizes a subambient cooling of ~5.7 °C with an average cooling power of ~81 W m<sup>–2</sup> under a solar intensity of ~528 W m<sup>–2</sup>. Furthermore, the supramolecule nature of the developed passive radiative cooling membrane bears enhanced shape malleability and recyclability, substantially enhancing its conformability to the complex geometry and extending its life for an eco-friendly society.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"14 23\",\"pages\":\"27222–27232\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2022-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.2c05943\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.2c05943","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

全天被动辐射冷却器已成为最先进的节能制冷工具之一,但其加工性能有限,成本高,制造工艺复杂,阻碍了大规模应用。为了应对这些挑战,这项工作开发了一种基于聚合物的被动辐射冷却器,该冷却器具有优化的浊度、可重构性和可回收性。这些冷却膜是通过非溶剂诱导相分离方法将辛烷基侧链改性聚乙烯醇选择性缩合而成的。通过对空气-聚合物界面的空间组织和分布进行合理的调整,获得了太阳反射率为96%的最佳亮白度。同时,丰富的? C-O-C键使该膜具有90%以上的红外热发射率。在528 W - m-2的太阳强度下,优化膜的亚环境冷却温度为~5.7℃,平均冷却功率为~81 W - m-2。此外,所开发的被动辐射冷却膜的超分子特性增强了其形状的延展性和可回收性,大大提高了其对复杂几何形状的适应性,延长了其对生态友好社会的使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rationally Tuning Phase Separation in Polymeric Membranes toward Optimized All-day Passive Radiative Coolers

Rationally Tuning Phase Separation in Polymeric Membranes toward Optimized All-day Passive Radiative Coolers

The all-day passive radiative cooler has emerged as one of the state-of-the-art energy-saving cooling tool kits but routinely suffers from limited processability, high cost, and complicated fabrication processes, which impede large-scale applications. To address these challenges, this work exploits a polymer-based passive radiative cooler with optimized turbidity, reconfigurability, and recyclability. These cooling membranes are fabricated via selective condensation of octyl side chain-modified polyvinyl alcohol through a non-solvent-induced phase separation method. The rational tuning over spatial organization and distribution of the air–polymer interface renders optimized bright whiteness with solar reflectance at 96%. Meanwhile, the abundant ?C–O–C– bonds endow such membranes with infrared thermal emittance over 90%. The optimized membrane realizes a subambient cooling of ~5.7 °C with an average cooling power of ~81 W m–2 under a solar intensity of ~528 W m–2. Furthermore, the supramolecule nature of the developed passive radiative cooling membrane bears enhanced shape malleability and recyclability, substantially enhancing its conformability to the complex geometry and extending its life for an eco-friendly society.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信