广义alder型划分不等式

IF 0.7 4区 数学 Q2 MATHEMATICS
Liam Armstrong, Bryan Ducasse, Thomas Meyer, H. Swisher
{"title":"广义alder型划分不等式","authors":"Liam Armstrong, Bryan Ducasse, Thomas Meyer, H. Swisher","doi":"10.37236/11606","DOIUrl":null,"url":null,"abstract":"In 2020, Kang and Park conjectured a \"level $2$\" Alder-type partition inequality which encompasses the second Rogers-Ramanujan Identity. Duncan, Khunger, the fourth author, and Tamura proved Kang and Park's conjecture for all but finitely many cases utilizing a \"shift\" inequality and conjectured a further, weaker generalization that would extend both Alder's (now proven) as well as Kang and Park's conjecture to general level. Utilizing a modified shift inequality, Inagaki and Tamura have recently proven that the Kang and Park conjecture holds for level $3$ in all but finitely many cases. They further conjectured a stronger shift inequality which would imply a general level result for all but finitely many cases. Here, we prove their conjecture for large enough $n$, generalize the result for an arbitrary shift, and discuss the implications for Alder-type partition inequalities.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"2 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Generalized Alder-Type Partition Inequalities\",\"authors\":\"Liam Armstrong, Bryan Ducasse, Thomas Meyer, H. Swisher\",\"doi\":\"10.37236/11606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2020, Kang and Park conjectured a \\\"level $2$\\\" Alder-type partition inequality which encompasses the second Rogers-Ramanujan Identity. Duncan, Khunger, the fourth author, and Tamura proved Kang and Park's conjecture for all but finitely many cases utilizing a \\\"shift\\\" inequality and conjectured a further, weaker generalization that would extend both Alder's (now proven) as well as Kang and Park's conjecture to general level. Utilizing a modified shift inequality, Inagaki and Tamura have recently proven that the Kang and Park conjecture holds for level $3$ in all but finitely many cases. They further conjectured a stronger shift inequality which would imply a general level result for all but finitely many cases. Here, we prove their conjecture for large enough $n$, generalize the result for an arbitrary shift, and discuss the implications for Alder-type partition inequalities.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37236/11606\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/11606","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

2020年,Kang和Park推测了包含第二罗杰斯-拉马努金恒等式的“2级”alder型划分不等式。Duncan、Khunger(第四作者)和Tamura利用“移位”不等式证明了Kang和Park的猜想适用于除了有限的许多情况之外的所有情况,并推测了一个进一步的、较弱的泛化,该泛化将Alder的(现已被证明)以及Kang和Park的猜想扩展到一般水平。利用一个修正的移位不等式,Inagaki和Tamura最近证明了Kang和Park猜想除了有限的情况外,在所有情况下都适用于水平$3$。他们进一步推测了一个更强的转移不平等,这意味着除了有限的许多情况外,所有情况的结果都是一般水平的。在这里,我们证明了他们的猜想对于足够大的$n$,推广了任意移位的结果,并讨论了对alder型划分不等式的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Alder-Type Partition Inequalities
In 2020, Kang and Park conjectured a "level $2$" Alder-type partition inequality which encompasses the second Rogers-Ramanujan Identity. Duncan, Khunger, the fourth author, and Tamura proved Kang and Park's conjecture for all but finitely many cases utilizing a "shift" inequality and conjectured a further, weaker generalization that would extend both Alder's (now proven) as well as Kang and Park's conjecture to general level. Utilizing a modified shift inequality, Inagaki and Tamura have recently proven that the Kang and Park conjecture holds for level $3$ in all but finitely many cases. They further conjectured a stronger shift inequality which would imply a general level result for all but finitely many cases. Here, we prove their conjecture for large enough $n$, generalize the result for an arbitrary shift, and discuss the implications for Alder-type partition inequalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信