广义Dahlquist常数及其在典型神经网络一般间歇控制同步分析中的应用

Zhang Qunli
{"title":"广义Dahlquist常数及其在典型神经网络一般间歇控制同步分析中的应用","authors":"Zhang Qunli","doi":"10.1155/2011/249136","DOIUrl":null,"url":null,"abstract":"A novel and effective approach to synchronization analysis of neural networks is investigated by using the nonlinear operator named the generalized Dahlquist constant and the general intermittent control. The proposed approach offers a design procedure for synchronization of a large class of neural networks. The numerical simulations whose theoretical results are applied to typical neural networks with and without delayed item demonstrate the effectiveness and feasibility of the proposed technique.","PeriodicalId":7288,"journal":{"name":"Adv. Artif. Neural Syst.","volume":"15 1","pages":"249136:1-249136:7"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The Generalized Dahlquist Constant with Applications in Synchronization Analysis of Typical Neural Networks via General Intermittent Control\",\"authors\":\"Zhang Qunli\",\"doi\":\"10.1155/2011/249136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel and effective approach to synchronization analysis of neural networks is investigated by using the nonlinear operator named the generalized Dahlquist constant and the general intermittent control. The proposed approach offers a design procedure for synchronization of a large class of neural networks. The numerical simulations whose theoretical results are applied to typical neural networks with and without delayed item demonstrate the effectiveness and feasibility of the proposed technique.\",\"PeriodicalId\":7288,\"journal\":{\"name\":\"Adv. Artif. Neural Syst.\",\"volume\":\"15 1\",\"pages\":\"249136:1-249136:7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Neural Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2011/249136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Neural Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/249136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

利用广义Dahlquist常数非线性算子和广义间歇控制,研究了一种新颖有效的神经网络同步分析方法。该方法为大规模神经网络的同步提供了一种设计方法。将理论结果应用于具有和不具有延迟项的典型神经网络的数值模拟,验证了该方法的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Generalized Dahlquist Constant with Applications in Synchronization Analysis of Typical Neural Networks via General Intermittent Control
A novel and effective approach to synchronization analysis of neural networks is investigated by using the nonlinear operator named the generalized Dahlquist constant and the general intermittent control. The proposed approach offers a design procedure for synchronization of a large class of neural networks. The numerical simulations whose theoretical results are applied to typical neural networks with and without delayed item demonstrate the effectiveness and feasibility of the proposed technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信