压滑铸造加工氧化铝(Al2O3)制品的力学性能及对比评价

IF 1.3 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS
P. Raju, A. Khanra, M. B. Suresh, Y. S. Rao, Roy Johnson
{"title":"压滑铸造加工氧化铝(Al2O3)制品的力学性能及对比评价","authors":"P. Raju, A. Khanra, M. B. Suresh, Y. S. Rao, Roy Johnson","doi":"10.1080/17436753.2022.2156031","DOIUrl":null,"url":null,"abstract":"ABSTRACT Pressure Slip Casting (PSC) using polymer moulds offers several advantages over Conventional Slip Casting (CSC) of ceramics such as enhanced productivity in combination with higher green density, homogeneity and low rejections. PSC is currently practiced in table-ware industries however, application to the technical ceramics is limited owing to the collapse of cast part while de-moulding during pressure cast cycle under pneumatic pressure. Current study focuses on this key issue and demonstrated pressure casting process successfully for the fabrication of alumina parts. Slips of a mixture of alumina with different particle sizes in the various proportions and solid loadings were prepared. Slip under PSC resulted in effective interlocking of the particles retaining the shape while de-moulding and achieved a sintered density of 98.6% of theoretical density (TD). Slurry on CSC exhibited a lower sintered density of 97% of TD. Selection of particles with sizes in optimised proportion for PSC results in effective interlocking of particles in green parts as well as grains on sintering as revealed by the microstructure. This leads to higher density and mechanical properties. Slip thus optimised were shaped into solid spheres of ϕ 60 mm by PSC targeting grinding applications.","PeriodicalId":7224,"journal":{"name":"Advances in Applied Ceramics","volume":"1 1","pages":"211 - 221"},"PeriodicalIF":1.3000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pressure slip cast processing of alumina (Al2O3) products and comparative evaluation of mechanical properties\",\"authors\":\"P. Raju, A. Khanra, M. B. Suresh, Y. S. Rao, Roy Johnson\",\"doi\":\"10.1080/17436753.2022.2156031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Pressure Slip Casting (PSC) using polymer moulds offers several advantages over Conventional Slip Casting (CSC) of ceramics such as enhanced productivity in combination with higher green density, homogeneity and low rejections. PSC is currently practiced in table-ware industries however, application to the technical ceramics is limited owing to the collapse of cast part while de-moulding during pressure cast cycle under pneumatic pressure. Current study focuses on this key issue and demonstrated pressure casting process successfully for the fabrication of alumina parts. Slips of a mixture of alumina with different particle sizes in the various proportions and solid loadings were prepared. Slip under PSC resulted in effective interlocking of the particles retaining the shape while de-moulding and achieved a sintered density of 98.6% of theoretical density (TD). Slurry on CSC exhibited a lower sintered density of 97% of TD. Selection of particles with sizes in optimised proportion for PSC results in effective interlocking of particles in green parts as well as grains on sintering as revealed by the microstructure. This leads to higher density and mechanical properties. Slip thus optimised were shaped into solid spheres of ϕ 60 mm by PSC targeting grinding applications.\",\"PeriodicalId\":7224,\"journal\":{\"name\":\"Advances in Applied Ceramics\",\"volume\":\"1 1\",\"pages\":\"211 - 221\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/17436753.2022.2156031\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/17436753.2022.2156031","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 1

摘要

使用聚合物模具的压力滑动铸造(PSC)与传统的陶瓷滑动铸造(CSC)相比具有几个优点,例如提高了生产率,同时具有更高的绿色密度、均匀性和低废品率。PSC目前应用于餐具行业,但在工业陶瓷领域的应用受到限制,因为在气动压力下的压力铸造过程中,铸件在脱模过程中会发生坍塌。目前的研究主要集中在这一关键问题上,并成功地展示了氧化铝零件的压力铸造工艺。制备了不同颗粒大小、不同比例和固体负载的氧化铝混合物的卡瓦。PSC下的滑移导致颗粒有效联锁,在脱模时保持形状,烧结密度达到理论密度(TD)的98.6%。CSC上的浆料烧结密度较低,为TD的97%。在PSC中选择尺寸比例最佳的颗粒,可以使绿色部分的颗粒和烧结时的颗粒有效联锁,如微观结构所示。这导致更高的密度和机械性能。因此,通过PSC瞄准磨削应用,优化的滑动被塑造成φ 60 mm的固体球体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pressure slip cast processing of alumina (Al2O3) products and comparative evaluation of mechanical properties
ABSTRACT Pressure Slip Casting (PSC) using polymer moulds offers several advantages over Conventional Slip Casting (CSC) of ceramics such as enhanced productivity in combination with higher green density, homogeneity and low rejections. PSC is currently practiced in table-ware industries however, application to the technical ceramics is limited owing to the collapse of cast part while de-moulding during pressure cast cycle under pneumatic pressure. Current study focuses on this key issue and demonstrated pressure casting process successfully for the fabrication of alumina parts. Slips of a mixture of alumina with different particle sizes in the various proportions and solid loadings were prepared. Slip under PSC resulted in effective interlocking of the particles retaining the shape while de-moulding and achieved a sintered density of 98.6% of theoretical density (TD). Slurry on CSC exhibited a lower sintered density of 97% of TD. Selection of particles with sizes in optimised proportion for PSC results in effective interlocking of particles in green parts as well as grains on sintering as revealed by the microstructure. This leads to higher density and mechanical properties. Slip thus optimised were shaped into solid spheres of ϕ 60 mm by PSC targeting grinding applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Ceramics
Advances in Applied Ceramics 工程技术-材料科学:硅酸盐
CiteScore
4.40
自引率
4.50%
发文量
17
审稿时长
5.2 months
期刊介绍: Advances in Applied Ceramics: Structural, Functional and Bioceramics provides international coverage of high-quality research on functional ceramics, engineering ceramics and bioceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信