{"title":"黄原药生成六元碳环的途径","authors":"S. Zard","doi":"10.1177/17475198221088194","DOIUrl":null,"url":null,"abstract":"Convergent routes to various six-membered carbocyclic architectures exploiting the unique radical chemistry of xanthates are described in this brief review. Three approaches are discussed. The first is the modification of existing cyclohexane building blocks, namely, cyclohexanones, cyclohexenones and cyclohexenes. The second deals with the construction of six-membered carbocycles by associating the chemistry of xanthates with classical ionic reactions, especially the Robinson annulation, the Michael addition and the Horner–Wadsworth–Emmons condensation. Finally, the third route is the formation of six-membered rings by direct six-exo and, but more rarely, six-endo cyclisation modes. Many of the complex structures presented herein would be tedious to obtain by more traditional methods.","PeriodicalId":15318,"journal":{"name":"Journal of Chemical Research-s","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The xanthate route to six-membered carbocycles\",\"authors\":\"S. Zard\",\"doi\":\"10.1177/17475198221088194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convergent routes to various six-membered carbocyclic architectures exploiting the unique radical chemistry of xanthates are described in this brief review. Three approaches are discussed. The first is the modification of existing cyclohexane building blocks, namely, cyclohexanones, cyclohexenones and cyclohexenes. The second deals with the construction of six-membered carbocycles by associating the chemistry of xanthates with classical ionic reactions, especially the Robinson annulation, the Michael addition and the Horner–Wadsworth–Emmons condensation. Finally, the third route is the formation of six-membered rings by direct six-exo and, but more rarely, six-endo cyclisation modes. Many of the complex structures presented herein would be tedious to obtain by more traditional methods.\",\"PeriodicalId\":15318,\"journal\":{\"name\":\"Journal of Chemical Research-s\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Research-s\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/17475198221088194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Research-s","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/17475198221088194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Convergent routes to various six-membered carbocyclic architectures exploiting the unique radical chemistry of xanthates are described in this brief review. Three approaches are discussed. The first is the modification of existing cyclohexane building blocks, namely, cyclohexanones, cyclohexenones and cyclohexenes. The second deals with the construction of six-membered carbocycles by associating the chemistry of xanthates with classical ionic reactions, especially the Robinson annulation, the Michael addition and the Horner–Wadsworth–Emmons condensation. Finally, the third route is the formation of six-membered rings by direct six-exo and, but more rarely, six-endo cyclisation modes. Many of the complex structures presented herein would be tedious to obtain by more traditional methods.
期刊介绍:
The Journal of Chemical Research is a peer reviewed journal that publishes full-length review and research papers in all branches of experimental chemistry. The journal fills a niche by also publishing short papers, a format which favours particular types of work, e.g. the scope of new reagents or methodology, and the elucidation of the structure of novel compounds. Though welcome, short papers should not result in fragmentation of publication, they should describe a completed piece of work. The Journal is not intended as a vehicle for preliminary publications. The work must meet all the normal criteria for acceptance as regards scientific standards. Papers that contain extensive biological results or material relating to other areas of science may be diverted to more appropriate specialist journals. Areas of coverage include: Organic Chemistry; Inorganic Chemistry; Materials Chemistry; Crystallography; Computational Chemistry.