La-ZnO纳米复合材料(Z-scheme机制)增强g-C3N4 (GCN)对有毒药物污染物的光催化性能

IF 0.7 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING
R. Chandrapal, J. Raveena, G. Bakiyaraj, S. Bharathkumar, V. Ganesh, J. Archana, M. Navaneethan
{"title":"La-ZnO纳米复合材料(Z-scheme机制)增强g-C3N4 (GCN)对有毒药物污染物的光催化性能","authors":"R. Chandrapal, J. Raveena, G. Bakiyaraj, S. Bharathkumar, V. Ganesh, J. Archana, M. Navaneethan","doi":"10.1557/s43578-023-01087-6","DOIUrl":null,"url":null,"abstract":"Highly effective Z-scheme La–ZnO/GCN nanocomposite (LZG) were synthesized via hydrothermal and ultrasonication methods. The prepared samples were further analyzed through varies techniques like X-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM), X-ray photoelectron spectroscopy (XPS) and UV–visible spectroscopy. XRD confirms the non-detection of secondary phase formation and decrementing pattern of crystallite size confirm La ions presence in host lattice. Presence of La–ZnO nanorods on nanosheets of GCN are well observed from the HRSEM analysis. Enhancement in pollutant degradation was accredited due to higher charge transfer property observed from EIS (Electrochemical impedance spectroscopy). First-order Langmuir–Hinshelwood relation reveals about the higher rate of reaction (0.01796 × 10–2 min−1), around 84% of TC pollutant degradation by 10-10LZG nanocomposite within the time span of 80 min. The current research supports a novel design of nanocomposite with an electron trapper for hindering charge recombination process and enhancing the degradation of pharmaceutical pollutants.","PeriodicalId":14079,"journal":{"name":"International Journal of Materials Research","volume":"98 1","pages":"3585 - 3601"},"PeriodicalIF":0.7000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhancing the photocatalytic performance of g-C3N4 (GCN) via La–ZnO nanocomposite (Z-scheme mechanism) against toxic pharmaceutical pollutant\",\"authors\":\"R. Chandrapal, J. Raveena, G. Bakiyaraj, S. Bharathkumar, V. Ganesh, J. Archana, M. Navaneethan\",\"doi\":\"10.1557/s43578-023-01087-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Highly effective Z-scheme La–ZnO/GCN nanocomposite (LZG) were synthesized via hydrothermal and ultrasonication methods. The prepared samples were further analyzed through varies techniques like X-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM), X-ray photoelectron spectroscopy (XPS) and UV–visible spectroscopy. XRD confirms the non-detection of secondary phase formation and decrementing pattern of crystallite size confirm La ions presence in host lattice. Presence of La–ZnO nanorods on nanosheets of GCN are well observed from the HRSEM analysis. Enhancement in pollutant degradation was accredited due to higher charge transfer property observed from EIS (Electrochemical impedance spectroscopy). First-order Langmuir–Hinshelwood relation reveals about the higher rate of reaction (0.01796 × 10–2 min−1), around 84% of TC pollutant degradation by 10-10LZG nanocomposite within the time span of 80 min. The current research supports a novel design of nanocomposite with an electron trapper for hindering charge recombination process and enhancing the degradation of pharmaceutical pollutants.\",\"PeriodicalId\":14079,\"journal\":{\"name\":\"International Journal of Materials Research\",\"volume\":\"98 1\",\"pages\":\"3585 - 3601\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43578-023-01087-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-023-01087-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

采用水热法和超声法合成了高效的Z-scheme La-ZnO /GCN纳米复合材料。通过x射线衍射(XRD)、高分辨率扫描电镜(HRSEM)、x射线光电子能谱(XPS)和紫外可见光谱等技术对制备的样品进行进一步分析。XRD证实了未检测到二次相的形成,晶粒尺寸的递减模式证实了主晶格中存在La离子。通过HRSEM分析,可以很好地观察到GCN纳米片上存在La-ZnO纳米棒。由于电化学阻抗谱(EIS)观察到更高的电荷转移特性,从而增强了污染物的降解。一阶Langmuir-Hinshelwood关系揭示了更高的反应速率(0.01796 × 10-2 min−1),10-10LZG纳米复合材料在80 min的时间内降解了约84%的TC污染物。本研究支持了一种新型的带有电子捕集器的纳米复合材料的设计,以阻碍电荷重组过程,增强药物污染物的降解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing the photocatalytic performance of g-C3N4 (GCN) via La–ZnO nanocomposite (Z-scheme mechanism) against toxic pharmaceutical pollutant
Highly effective Z-scheme La–ZnO/GCN nanocomposite (LZG) were synthesized via hydrothermal and ultrasonication methods. The prepared samples were further analyzed through varies techniques like X-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM), X-ray photoelectron spectroscopy (XPS) and UV–visible spectroscopy. XRD confirms the non-detection of secondary phase formation and decrementing pattern of crystallite size confirm La ions presence in host lattice. Presence of La–ZnO nanorods on nanosheets of GCN are well observed from the HRSEM analysis. Enhancement in pollutant degradation was accredited due to higher charge transfer property observed from EIS (Electrochemical impedance spectroscopy). First-order Langmuir–Hinshelwood relation reveals about the higher rate of reaction (0.01796 × 10–2 min−1), around 84% of TC pollutant degradation by 10-10LZG nanocomposite within the time span of 80 min. The current research supports a novel design of nanocomposite with an electron trapper for hindering charge recombination process and enhancing the degradation of pharmaceutical pollutants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
119
审稿时长
6.4 months
期刊介绍: The International Journal of Materials Research (IJMR) publishes original high quality experimental and theoretical papers and reviews on basic and applied research in the field of materials science and engineering, with focus on synthesis, processing, constitution, and properties of all classes of materials. Particular emphasis is placed on microstructural design, phase relations, computational thermodynamics, and kinetics at the nano to macro scale. Contributions may also focus on progress in advanced characterization techniques. All articles are subject to thorough, independent peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信