关于扭曲或几乎复杂的结构

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
M. Cahen, S. Gutt, J. Rawnsley
{"title":"关于扭曲或几乎复杂的结构","authors":"M. Cahen, S. Gutt, J. Rawnsley","doi":"10.3934/JGM.2021006","DOIUrl":null,"url":null,"abstract":"In this paper we look at the question of integrability, or not, of the two natural almost complex structures $J^{\\pm}_\\nabla$ defined on the twistor space $J(M,g)$ of an even-dimensional manifold $M$ with additional structures $g$ and $\\nabla$ a $g$-connection. We also look at the question of the compatibility of $J^{\\pm}_\\nabla$ with a natural closed $2$-form $\\omega^{J(M,g,\\nabla)}$ defined on $J(M,g)$. For $(M,g)$ we consider either a pseudo-Riemannian manifold, orientable or not, with the Levi Civita connection or a symplectic manifold with a given symplectic connection $\\nabla$. In all cases $J(M,g)$ is a bundle of complex structures on the tangent spaces of $M$ compatible with $g$ and we denote by $\\pi \\colon J(M,g) \\longrightarrow M$ the bundle projection. In the case $M$ is oriented we require the orientation of the complex structures to be the given one. In the symplectic case the complex structures are positive.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On twistor almost complex structures\",\"authors\":\"M. Cahen, S. Gutt, J. Rawnsley\",\"doi\":\"10.3934/JGM.2021006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we look at the question of integrability, or not, of the two natural almost complex structures $J^{\\\\pm}_\\\\nabla$ defined on the twistor space $J(M,g)$ of an even-dimensional manifold $M$ with additional structures $g$ and $\\\\nabla$ a $g$-connection. We also look at the question of the compatibility of $J^{\\\\pm}_\\\\nabla$ with a natural closed $2$-form $\\\\omega^{J(M,g,\\\\nabla)}$ defined on $J(M,g)$. For $(M,g)$ we consider either a pseudo-Riemannian manifold, orientable or not, with the Levi Civita connection or a symplectic manifold with a given symplectic connection $\\\\nabla$. In all cases $J(M,g)$ is a bundle of complex structures on the tangent spaces of $M$ compatible with $g$ and we denote by $\\\\pi \\\\colon J(M,g) \\\\longrightarrow M$ the bundle projection. In the case $M$ is oriented we require the orientation of the complex structures to be the given one. In the symplectic case the complex structures are positive.\",\"PeriodicalId\":49161,\"journal\":{\"name\":\"Journal of Geometric Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/JGM.2021006\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/JGM.2021006","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们研究了在偶维流形$M$的扭曲空间$J(M,g)$上定义的两个自然几乎复杂结构$J^{\pm}_\nabla$的可积性问题,这些结构具有附加结构$g$和$\nabla$ - $g$ -连接。我们还研究了$J^{\pm}_\nabla$与在$J(M,g)$上定义的自然封闭的$2$ -form $\omega^{J(M,g,\nabla)}$的兼容性问题。对于$(M,g)$,我们考虑具有Levi Civita连接的伪黎曼流形(可定向或不可定向)或具有给定辛连接$\nabla$的辛流形。在所有情况下,$J(M,g)$都是与$g$相容的$M$的切空间上的一束复杂结构,我们用$\pi \colon J(M,g) \longrightarrow M$表示束的投影。在$M$定向的情况下,我们要求复杂结构的方向是给定的。在辛情况下,复结构是正的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On twistor almost complex structures
In this paper we look at the question of integrability, or not, of the two natural almost complex structures $J^{\pm}_\nabla$ defined on the twistor space $J(M,g)$ of an even-dimensional manifold $M$ with additional structures $g$ and $\nabla$ a $g$-connection. We also look at the question of the compatibility of $J^{\pm}_\nabla$ with a natural closed $2$-form $\omega^{J(M,g,\nabla)}$ defined on $J(M,g)$. For $(M,g)$ we consider either a pseudo-Riemannian manifold, orientable or not, with the Levi Civita connection or a symplectic manifold with a given symplectic connection $\nabla$. In all cases $J(M,g)$ is a bundle of complex structures on the tangent spaces of $M$ compatible with $g$ and we denote by $\pi \colon J(M,g) \longrightarrow M$ the bundle projection. In the case $M$ is oriented we require the orientation of the complex structures to be the given one. In the symplectic case the complex structures are positive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometric Mechanics
Journal of Geometric Mechanics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.70
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal: 1. Lagrangian and Hamiltonian mechanics 2. Symplectic and Poisson geometry and their applications to mechanics 3. Geometric and optimal control theory 4. Geometric and variational integration 5. Geometry of stochastic systems 6. Geometric methods in dynamical systems 7. Continuum mechanics 8. Classical field theory 9. Fluid mechanics 10. Infinite-dimensional dynamical systems 11. Quantum mechanics and quantum information theory 12. Applications in physics, technology, engineering and the biological sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信