分位数回归与Box-Cox变换的逻辑整合拟合一类生物统计数据

Y. Yuan, Huansha Wang
{"title":"分位数回归与Box-Cox变换的逻辑整合拟合一类生物统计数据","authors":"Y. Yuan, Huansha Wang","doi":"10.1109/ICBBE.2009.5163270","DOIUrl":null,"url":null,"abstract":"Quantile regression can be used for some biostatistical research as the first choice. But direct applications are often hampered by the problem of quantile regression planes' crossing in finite sample cases. After research, the Box-Cox transformation is used to avoid the crossing problem. Integrating Box-Cox transformation with quantile regression, we suggest a new method. And the fitting of salmon lustrousness data is presented to illustrate the use of this method.","PeriodicalId":6430,"journal":{"name":"2009 3rd International Conference on Bioinformatics and Biomedical Engineering","volume":"78 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantile Regression and Box-Cox Transformation's Logical Integration in Fitting Some Kind of Biostatistical Data\",\"authors\":\"Y. Yuan, Huansha Wang\",\"doi\":\"10.1109/ICBBE.2009.5163270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantile regression can be used for some biostatistical research as the first choice. But direct applications are often hampered by the problem of quantile regression planes' crossing in finite sample cases. After research, the Box-Cox transformation is used to avoid the crossing problem. Integrating Box-Cox transformation with quantile regression, we suggest a new method. And the fitting of salmon lustrousness data is presented to illustrate the use of this method.\",\"PeriodicalId\":6430,\"journal\":{\"name\":\"2009 3rd International Conference on Bioinformatics and Biomedical Engineering\",\"volume\":\"78 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 3rd International Conference on Bioinformatics and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBBE.2009.5163270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 3rd International Conference on Bioinformatics and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBBE.2009.5163270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分位数回归可以作为一些生物统计研究的首选方法。但在有限样本情况下,分位数回归平面的交叉问题往往阻碍了直接应用。经过研究,采用Box-Cox变换来避免交叉问题。将Box-Cox变换与分位数回归相结合,提出了一种新的方法。并以鲑鱼亮度数据的拟合为例说明了该方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantile Regression and Box-Cox Transformation's Logical Integration in Fitting Some Kind of Biostatistical Data
Quantile regression can be used for some biostatistical research as the first choice. But direct applications are often hampered by the problem of quantile regression planes' crossing in finite sample cases. After research, the Box-Cox transformation is used to avoid the crossing problem. Integrating Box-Cox transformation with quantile regression, we suggest a new method. And the fitting of salmon lustrousness data is presented to illustrate the use of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信