{"title":"基于Ag-Al共掺杂ZnS的有机发光器件中高效电子传递层","authors":"Xiaoxiao He, Wen-jun Wang, Shuhong Li, Qingru Wang, Wanquan Zheng, Qiang Shi, Yun-long Liu","doi":"10.1149/2.0021502SSL","DOIUrl":null,"url":null,"abstract":"Electron transmission improvement in organic light-emitting devices with Ag-Al co-doped ZnS has been demonstrated. The electroluminescence (EL) of device with co-doped ZnS electron transfer layer (ETL) is more than that of devices without ETL and the co-doped ZnS ETL device performs higher EL compared to pure ZnS ETL device. The using of co-doped ZnS can reduce the thickness of ETL from 40 nm to 8 nm and performs comparable efficiency and higher EL. According to the PL spectra studies and current density-voltage characters, the improved electron transmission is attributed to the introduction of impurity energy level and the increased concentration of electron.","PeriodicalId":11423,"journal":{"name":"ECS Solid State Letters","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High Efficiency Electron Transfer Layer based on Ag-Al Co-Doped ZnS in Organic Lighting Emission Devices\",\"authors\":\"Xiaoxiao He, Wen-jun Wang, Shuhong Li, Qingru Wang, Wanquan Zheng, Qiang Shi, Yun-long Liu\",\"doi\":\"10.1149/2.0021502SSL\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electron transmission improvement in organic light-emitting devices with Ag-Al co-doped ZnS has been demonstrated. The electroluminescence (EL) of device with co-doped ZnS electron transfer layer (ETL) is more than that of devices without ETL and the co-doped ZnS ETL device performs higher EL compared to pure ZnS ETL device. The using of co-doped ZnS can reduce the thickness of ETL from 40 nm to 8 nm and performs comparable efficiency and higher EL. According to the PL spectra studies and current density-voltage characters, the improved electron transmission is attributed to the introduction of impurity energy level and the increased concentration of electron.\",\"PeriodicalId\":11423,\"journal\":{\"name\":\"ECS Solid State Letters\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Solid State Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/2.0021502SSL\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Solid State Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2.0021502SSL","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High Efficiency Electron Transfer Layer based on Ag-Al Co-Doped ZnS in Organic Lighting Emission Devices
Electron transmission improvement in organic light-emitting devices with Ag-Al co-doped ZnS has been demonstrated. The electroluminescence (EL) of device with co-doped ZnS electron transfer layer (ETL) is more than that of devices without ETL and the co-doped ZnS ETL device performs higher EL compared to pure ZnS ETL device. The using of co-doped ZnS can reduce the thickness of ETL from 40 nm to 8 nm and performs comparable efficiency and higher EL. According to the PL spectra studies and current density-voltage characters, the improved electron transmission is attributed to the introduction of impurity energy level and the increased concentration of electron.