测试数据分析-探索生产测试数据中的空间和测试项目相关性

Chun-Kai Hsu, Fan Lin, K. Cheng, Wangyang Zhang, Xin Li, J. Carulli, K. Butler
{"title":"测试数据分析-探索生产测试数据中的空间和测试项目相关性","authors":"Chun-Kai Hsu, Fan Lin, K. Cheng, Wangyang Zhang, Xin Li, J. Carulli, K. Butler","doi":"10.1109/TEST.2013.6651900","DOIUrl":null,"url":null,"abstract":"The discovery of patterns and correlations hidden in the test data could help reduce test time and cost. In this paper, we propose a methodology and supporting statistical regression tools that can exploit and utilize both spatial and inter-test-item correlations in the test data for test time and cost reduction. We first describe a statistical regression method, called group lasso, which can identify inter-test-item correlations from test data. After learning such correlations, some test items can be identified for removal from the test program without compromising test quality. An extended version of this method, weighted group lasso, allows taking into account the distinct test time/cost of each individual test item in the formulation as a weighted optimization problem. As a result, its solution would favor more costly test items for removal from the test program. We further integrate weighted group lasso with another statistical regression technique, virtual probe, which can learn spatial correlations of test data across a wafer. The integrated method could then utilize both spatial and inter-test-item correlations to maximize the number of test items whose values can be predicted without measurement. Experimental results of a high-volume industrial device show that utilizing both spatial and inter-test-item correlations can help reduce test time by up to 55%.","PeriodicalId":6379,"journal":{"name":"2013 IEEE International Test Conference (ITC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Test data analytics — Exploring spatial and test-item correlations in production test data\",\"authors\":\"Chun-Kai Hsu, Fan Lin, K. Cheng, Wangyang Zhang, Xin Li, J. Carulli, K. Butler\",\"doi\":\"10.1109/TEST.2013.6651900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discovery of patterns and correlations hidden in the test data could help reduce test time and cost. In this paper, we propose a methodology and supporting statistical regression tools that can exploit and utilize both spatial and inter-test-item correlations in the test data for test time and cost reduction. We first describe a statistical regression method, called group lasso, which can identify inter-test-item correlations from test data. After learning such correlations, some test items can be identified for removal from the test program without compromising test quality. An extended version of this method, weighted group lasso, allows taking into account the distinct test time/cost of each individual test item in the formulation as a weighted optimization problem. As a result, its solution would favor more costly test items for removal from the test program. We further integrate weighted group lasso with another statistical regression technique, virtual probe, which can learn spatial correlations of test data across a wafer. The integrated method could then utilize both spatial and inter-test-item correlations to maximize the number of test items whose values can be predicted without measurement. Experimental results of a high-volume industrial device show that utilizing both spatial and inter-test-item correlations can help reduce test time by up to 55%.\",\"PeriodicalId\":6379,\"journal\":{\"name\":\"2013 IEEE International Test Conference (ITC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Test Conference (ITC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TEST.2013.6651900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.2013.6651900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

发现隐藏在测试数据中的模式和相关性可以帮助减少测试时间和成本。在本文中,我们提出了一种方法和支持的统计回归工具,可以利用测试数据中的空间和测试项目之间的相关性来减少测试时间和成本。我们首先描述了一种称为组套索的统计回归方法,它可以从测试数据中识别测试项目之间的相关性。在了解了这样的相关性之后,可以在不影响测试质量的情况下将一些测试项目从测试程序中移除。该方法的扩展版本,加权组套索,允许将公式中每个单独测试项目的不同测试时间/成本作为加权优化问题考虑在内。因此,它的解决方案将倾向于从测试程序中删除更昂贵的测试项目。我们进一步将加权组套索与另一种统计回归技术虚拟探针相结合,可以学习整个晶圆上测试数据的空间相关性。然后,综合方法可以利用空间和测试项目之间的相关性来最大化测试项目的数量,这些测试项目的值可以在没有测量的情况下预测。大量工业设备的实验结果表明,利用空间和测试项目之间的相关性可以帮助减少测试时间高达55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Test data analytics — Exploring spatial and test-item correlations in production test data
The discovery of patterns and correlations hidden in the test data could help reduce test time and cost. In this paper, we propose a methodology and supporting statistical regression tools that can exploit and utilize both spatial and inter-test-item correlations in the test data for test time and cost reduction. We first describe a statistical regression method, called group lasso, which can identify inter-test-item correlations from test data. After learning such correlations, some test items can be identified for removal from the test program without compromising test quality. An extended version of this method, weighted group lasso, allows taking into account the distinct test time/cost of each individual test item in the formulation as a weighted optimization problem. As a result, its solution would favor more costly test items for removal from the test program. We further integrate weighted group lasso with another statistical regression technique, virtual probe, which can learn spatial correlations of test data across a wafer. The integrated method could then utilize both spatial and inter-test-item correlations to maximize the number of test items whose values can be predicted without measurement. Experimental results of a high-volume industrial device show that utilizing both spatial and inter-test-item correlations can help reduce test time by up to 55%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信