具有耦合(k, ψ) -Riemann-Liouville分数积分边界条件的非线性耦合(k, ψ) -Hilfer分数阶微分系统的研究

A. Samadi, S. Ntouyas, B. Ahmad, J. Tariboon
{"title":"具有耦合(k, ψ) -Riemann-Liouville分数积分边界条件的非线性耦合(k, ψ) -Hilfer分数阶微分系统的研究","authors":"A. Samadi, S. Ntouyas, B. Ahmad, J. Tariboon","doi":"10.3390/foundations2040063","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the existence of solutions for a new boundary value problem of nonlinear coupled (k,ψ)–Hilfer fractional differential equations subject to coupled (k,ψ)–Riemann–Liouville fractional integral boundary conditions. We prove two existence results by applying the Leray–Schauder alternative, and Krasnosel’skiĭ’s fixed-point theorem under different criteria, while the third result, concerning the uniqueness of solutions for the given problem, relies on the Banach’s contraction mapping principle. Examples are included for illustrating the abstract results.","PeriodicalId":81291,"journal":{"name":"Foundations","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Investigation of a Nonlinear Coupled (k, ψ)–Hilfer Fractional Differential System with Coupled (k, ψ)–Riemann–Liouville Fractional Integral Boundary Conditions\",\"authors\":\"A. Samadi, S. Ntouyas, B. Ahmad, J. Tariboon\",\"doi\":\"10.3390/foundations2040063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the existence of solutions for a new boundary value problem of nonlinear coupled (k,ψ)–Hilfer fractional differential equations subject to coupled (k,ψ)–Riemann–Liouville fractional integral boundary conditions. We prove two existence results by applying the Leray–Schauder alternative, and Krasnosel’skiĭ’s fixed-point theorem under different criteria, while the third result, concerning the uniqueness of solutions for the given problem, relies on the Banach’s contraction mapping principle. Examples are included for illustrating the abstract results.\",\"PeriodicalId\":81291,\"journal\":{\"name\":\"Foundations\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/foundations2040063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foundations2040063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文讨论了一类新的非线性耦合(k,ψ) -Hilfer分数阶微分方程边值问题解的存在性,这些边值问题满足耦合(k,ψ) -Riemann-Liouville分数阶积分边界条件。在不同的判据下,我们利用Leray-Schauder替代法和Krasnosel’ski’s不动点定理证明了两个存在性结果,而关于给定问题解的唯一性的第三个结果则依赖于Banach的收缩映射原理。举例说明了抽象的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of a Nonlinear Coupled (k, ψ)–Hilfer Fractional Differential System with Coupled (k, ψ)–Riemann–Liouville Fractional Integral Boundary Conditions
This paper is concerned with the existence of solutions for a new boundary value problem of nonlinear coupled (k,ψ)–Hilfer fractional differential equations subject to coupled (k,ψ)–Riemann–Liouville fractional integral boundary conditions. We prove two existence results by applying the Leray–Schauder alternative, and Krasnosel’skiĭ’s fixed-point theorem under different criteria, while the third result, concerning the uniqueness of solutions for the given problem, relies on the Banach’s contraction mapping principle. Examples are included for illustrating the abstract results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信