Yeying Fan , Qian Ma , Guangshun Wei , Zhiming Cui , Yuanfeng Zhou , Wenping Wang
{"title":"TAD-Net:基于旋转变换编码的齿轴检测网络","authors":"Yeying Fan , Qian Ma , Guangshun Wei , Zhiming Cui , Yuanfeng Zhou , Wenping Wang","doi":"10.1016/j.gmod.2022.101138","DOIUrl":null,"url":null,"abstract":"<div><p>The tooth axes, defined on 3D tooth model, play a key role in digital orthodontics, which is usually used as an important reference in automatic tooth arrangement and anomaly detection<span>. In this paper, we propose an automatic deep learning network (TAD-Net) of tooth axis detection based on rotation transformation encoding. By utilizing quaternion transformation, we convert the geometric rotation transformation of the tooth axes into the feature encoding of the point cloud of 3D tooth models. Furthermore, the feature confidence-aware attention mechanism is adopted to generate dynamic weights for the features of each point to improve the network learning accuracy. Experimental results show that the proposed method has achieved higher detection accuracy on the constructed dental data set compared with the existing networks.</span></p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"121 ","pages":"Article 101138"},"PeriodicalIF":2.5000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TAD-Net: tooth axis detection network based on rotation transformation encoding\",\"authors\":\"Yeying Fan , Qian Ma , Guangshun Wei , Zhiming Cui , Yuanfeng Zhou , Wenping Wang\",\"doi\":\"10.1016/j.gmod.2022.101138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The tooth axes, defined on 3D tooth model, play a key role in digital orthodontics, which is usually used as an important reference in automatic tooth arrangement and anomaly detection<span>. In this paper, we propose an automatic deep learning network (TAD-Net) of tooth axis detection based on rotation transformation encoding. By utilizing quaternion transformation, we convert the geometric rotation transformation of the tooth axes into the feature encoding of the point cloud of 3D tooth models. Furthermore, the feature confidence-aware attention mechanism is adopted to generate dynamic weights for the features of each point to improve the network learning accuracy. Experimental results show that the proposed method has achieved higher detection accuracy on the constructed dental data set compared with the existing networks.</span></p></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"121 \",\"pages\":\"Article 101138\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1524070322000157\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070322000157","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
TAD-Net: tooth axis detection network based on rotation transformation encoding
The tooth axes, defined on 3D tooth model, play a key role in digital orthodontics, which is usually used as an important reference in automatic tooth arrangement and anomaly detection. In this paper, we propose an automatic deep learning network (TAD-Net) of tooth axis detection based on rotation transformation encoding. By utilizing quaternion transformation, we convert the geometric rotation transformation of the tooth axes into the feature encoding of the point cloud of 3D tooth models. Furthermore, the feature confidence-aware attention mechanism is adopted to generate dynamic weights for the features of each point to improve the network learning accuracy. Experimental results show that the proposed method has achieved higher detection accuracy on the constructed dental data set compared with the existing networks.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.