Tzu-Hsuan Cheng, Kenji Nishiguchi, Y. Fukawa, D. Hopkins
{"title":"基于dbc和基于有机双面冷却电源模块的热性能和可靠性比较","authors":"Tzu-Hsuan Cheng, Kenji Nishiguchi, Y. Fukawa, D. Hopkins","doi":"10.4071/1085-8024-2021.1.000382","DOIUrl":null,"url":null,"abstract":"\n Direct Bonded Copper (DBC) is the most popular solution for conventional high-power modules because of superior thermal/electrical/mechanical performance and mature manufacturing. To meet the rising demand of power density and power rating, a Double-Sided Cooled (DSC) sandwich structure using dual insulated metal-clad substrates was proposed and DBC still dominated the substrate selection of DSC power modules. However, there are several long-existing reliability challenges of conventional DBC-based power modules and the cost of DBC is relatively high compared with organic and metal (e.g. lead frame) substrates. This study proposes a DSC 1.2 kV half-bridge power module using dual epoxy-resin Insulated Metal Substrate (eIMS) for solving DBC-based power module issues and providing a cost-effective solution. The thermal performance outperforms traditional Alumina (Al2O3) DBC-based DSC power module due to moderate thermal conductivity (10 W/mK) and thin (120 μm) epoxy-resin composite dielectric layer compared with Alumina. The breakdown voltage of this high thermally conductive organic dielectric is 5 kVAC (@ 120 μm) and the Glass Transition Temperature (Tg) is 300°C which is indispensable for Wide-Band-Gap (WBG) devices and high-power applications. In terms of thermal-mechanical reliability, the organic-based DSC power module can pass the thermal cycling test over 2000 cycles by optimizing the mechanical properties of the encapsulant material. In conclusion, this paper not only proposes a competitive organic-based power module but also a methodology of evaluation for thermal and mechanical performance.","PeriodicalId":14363,"journal":{"name":"International Symposium on Microelectronics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal and Reliability Performance Comparison of DBC-Based and Organic-Based Double-Sided Cooled Power Modules\",\"authors\":\"Tzu-Hsuan Cheng, Kenji Nishiguchi, Y. Fukawa, D. Hopkins\",\"doi\":\"10.4071/1085-8024-2021.1.000382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Direct Bonded Copper (DBC) is the most popular solution for conventional high-power modules because of superior thermal/electrical/mechanical performance and mature manufacturing. To meet the rising demand of power density and power rating, a Double-Sided Cooled (DSC) sandwich structure using dual insulated metal-clad substrates was proposed and DBC still dominated the substrate selection of DSC power modules. However, there are several long-existing reliability challenges of conventional DBC-based power modules and the cost of DBC is relatively high compared with organic and metal (e.g. lead frame) substrates. This study proposes a DSC 1.2 kV half-bridge power module using dual epoxy-resin Insulated Metal Substrate (eIMS) for solving DBC-based power module issues and providing a cost-effective solution. The thermal performance outperforms traditional Alumina (Al2O3) DBC-based DSC power module due to moderate thermal conductivity (10 W/mK) and thin (120 μm) epoxy-resin composite dielectric layer compared with Alumina. The breakdown voltage of this high thermally conductive organic dielectric is 5 kVAC (@ 120 μm) and the Glass Transition Temperature (Tg) is 300°C which is indispensable for Wide-Band-Gap (WBG) devices and high-power applications. In terms of thermal-mechanical reliability, the organic-based DSC power module can pass the thermal cycling test over 2000 cycles by optimizing the mechanical properties of the encapsulant material. In conclusion, this paper not only proposes a competitive organic-based power module but also a methodology of evaluation for thermal and mechanical performance.\",\"PeriodicalId\":14363,\"journal\":{\"name\":\"International Symposium on Microelectronics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Microelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4071/1085-8024-2021.1.000382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Microelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/1085-8024-2021.1.000382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal and Reliability Performance Comparison of DBC-Based and Organic-Based Double-Sided Cooled Power Modules
Direct Bonded Copper (DBC) is the most popular solution for conventional high-power modules because of superior thermal/electrical/mechanical performance and mature manufacturing. To meet the rising demand of power density and power rating, a Double-Sided Cooled (DSC) sandwich structure using dual insulated metal-clad substrates was proposed and DBC still dominated the substrate selection of DSC power modules. However, there are several long-existing reliability challenges of conventional DBC-based power modules and the cost of DBC is relatively high compared with organic and metal (e.g. lead frame) substrates. This study proposes a DSC 1.2 kV half-bridge power module using dual epoxy-resin Insulated Metal Substrate (eIMS) for solving DBC-based power module issues and providing a cost-effective solution. The thermal performance outperforms traditional Alumina (Al2O3) DBC-based DSC power module due to moderate thermal conductivity (10 W/mK) and thin (120 μm) epoxy-resin composite dielectric layer compared with Alumina. The breakdown voltage of this high thermally conductive organic dielectric is 5 kVAC (@ 120 μm) and the Glass Transition Temperature (Tg) is 300°C which is indispensable for Wide-Band-Gap (WBG) devices and high-power applications. In terms of thermal-mechanical reliability, the organic-based DSC power module can pass the thermal cycling test over 2000 cycles by optimizing the mechanical properties of the encapsulant material. In conclusion, this paper not only proposes a competitive organic-based power module but also a methodology of evaluation for thermal and mechanical performance.