弹性半空间上的弹性层:矩阵的解

I. P. Dobrovolsky
{"title":"弹性半空间上的弹性层:矩阵的解","authors":"I. P. Dobrovolsky","doi":"10.4236/OALIB.1107191","DOIUrl":null,"url":null,"abstract":"If to apply bidimensional Fourier’s transform to homogeneous system of equations of the theory of elasticity, then we will receive system of ordinary differential equations. The general solution of this system contains 6 arbitrary constants and allows to solve problems for the layer and the multilayer environment. It is shown that it is convenient to do statement and the solution of such tasks in the matrix form. The task for the layer on the elastic half-space is solved. Ways of inverse of Fourier’s transformation are considered.","PeriodicalId":19593,"journal":{"name":"Open Access Library Journal","volume":"130 1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastic Layer on the Elastic Half-Space: The Solution in Matrixes\",\"authors\":\"I. P. Dobrovolsky\",\"doi\":\"10.4236/OALIB.1107191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If to apply bidimensional Fourier’s transform to homogeneous system of equations of the theory of elasticity, then we will receive system of ordinary differential equations. The general solution of this system contains 6 arbitrary constants and allows to solve problems for the layer and the multilayer environment. It is shown that it is convenient to do statement and the solution of such tasks in the matrix form. The task for the layer on the elastic half-space is solved. Ways of inverse of Fourier’s transformation are considered.\",\"PeriodicalId\":19593,\"journal\":{\"name\":\"Open Access Library Journal\",\"volume\":\"130 1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Access Library Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/OALIB.1107191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Access Library Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/OALIB.1107191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果将二维傅里叶变换应用于弹性理论的齐次方程组,则得到常微分方程组。该系统的通解包含6个任意常数,允许求解层和多层环境的问题。结果表明,用矩阵形式表述和求解这类问题是很方便的。解决了弹性半空间层的问题。研究了傅里叶变换的反变换方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elastic Layer on the Elastic Half-Space: The Solution in Matrixes
If to apply bidimensional Fourier’s transform to homogeneous system of equations of the theory of elasticity, then we will receive system of ordinary differential equations. The general solution of this system contains 6 arbitrary constants and allows to solve problems for the layer and the multilayer environment. It is shown that it is convenient to do statement and the solution of such tasks in the matrix form. The task for the layer on the elastic half-space is solved. Ways of inverse of Fourier’s transformation are considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信