与Banach函数空间相关的Orlicz代数

IF 0.7 4区 数学 Q2 MATHEMATICS
Chung-chuan Chen, A. Bagheri Salec, S. M. Tabatabaie
{"title":"与Banach函数空间相关的Orlicz代数","authors":"Chung-chuan Chen, A. Bagheri Salec, S. M. Tabatabaie","doi":"10.15672/hujms.1018098","DOIUrl":null,"url":null,"abstract":"In this paper, we study the spaces ${\\mathcal X}^\\Phi$ as Banach algebras, where $\\mathcal X$ is a quasi-Banach space and $\\Phi$ is a Young function, and extend some well-known facts regarding Lebesgue and Orlicz spaces on this new structure. Also, for each $p\\geq 1$, we give some necessary condition for the space $\\mathcal{X}^p$ to be a Banach algebra under the pointwise product.","PeriodicalId":55078,"journal":{"name":"Hacettepe Journal of Mathematics and Statistics","volume":"24 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orlicz Algebras Associated to a Banach Function Space\",\"authors\":\"Chung-chuan Chen, A. Bagheri Salec, S. M. Tabatabaie\",\"doi\":\"10.15672/hujms.1018098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the spaces ${\\\\mathcal X}^\\\\Phi$ as Banach algebras, where $\\\\mathcal X$ is a quasi-Banach space and $\\\\Phi$ is a Young function, and extend some well-known facts regarding Lebesgue and Orlicz spaces on this new structure. Also, for each $p\\\\geq 1$, we give some necessary condition for the space $\\\\mathcal{X}^p$ to be a Banach algebra under the pointwise product.\",\"PeriodicalId\":55078,\"journal\":{\"name\":\"Hacettepe Journal of Mathematics and Statistics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hacettepe Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15672/hujms.1018098\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.1018098","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了空间${\mathcal X}^\Phi$作为Banach代数,其中$\mathcal X$是一个拟Banach空间,$\Phi$是一个Young函数,并在这个新结构上推广了关于Lebesgue和Orlicz空间的一些众所周知的事实。并且,对于每个$p\geq 1$,我们给出了空间$\mathcal{X}^p$在点积下是Banach代数的一些必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orlicz Algebras Associated to a Banach Function Space
In this paper, we study the spaces ${\mathcal X}^\Phi$ as Banach algebras, where $\mathcal X$ is a quasi-Banach space and $\Phi$ is a Young function, and extend some well-known facts regarding Lebesgue and Orlicz spaces on this new structure. Also, for each $p\geq 1$, we give some necessary condition for the space $\mathcal{X}^p$ to be a Banach algebra under the pointwise product.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
6-12 weeks
期刊介绍: Hacettepe Journal of Mathematics and Statistics covers all aspects of Mathematics and Statistics. Papers on the interface between Mathematics and Statistics are particularly welcome, including applications to Physics, Actuarial Sciences, Finance and Economics. We strongly encourage submissions for Statistics Section including current and important real world examples across a wide range of disciplines. Papers have innovations of statistical methodology are highly welcome. Purely theoretical papers may be considered only if they include popular real world applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信