{"title":"由渐变折射率多模光纤产生百瓦级全光纤可见超连续谱","authors":"Li Jiang, R. Song, J. Hou","doi":"10.3788/col202321.051403","DOIUrl":null,"url":null,"abstract":"A monolithic visible supercontinuum (SC) source with a record average output power of 204 W and a spectrum ranging from 580 nm to beyond 2400 nm is achieved in a piece of standard telecom graded-index multimode fiber (GRIN MMF) by designing the pumping system. The influence of the GRIN MMF length on the geometrical parameter instability (GPI) effect is analyzed for the first time, to the best of our knowledge, by comparing the SC spectral region dominated by the GPI effect under different fiber lengths. Our work could pave the way for robust, cost-effective, and high-power visible SC sources.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"51 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hundred-watt level all-fiber visible supercontinuum generation from a graded-index multimode fiber\",\"authors\":\"Li Jiang, R. Song, J. Hou\",\"doi\":\"10.3788/col202321.051403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A monolithic visible supercontinuum (SC) source with a record average output power of 204 W and a spectrum ranging from 580 nm to beyond 2400 nm is achieved in a piece of standard telecom graded-index multimode fiber (GRIN MMF) by designing the pumping system. The influence of the GRIN MMF length on the geometrical parameter instability (GPI) effect is analyzed for the first time, to the best of our knowledge, by comparing the SC spectral region dominated by the GPI effect under different fiber lengths. Our work could pave the way for robust, cost-effective, and high-power visible SC sources.\",\"PeriodicalId\":10293,\"journal\":{\"name\":\"Chinese Optics Letters\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Optics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3788/col202321.051403\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Optics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3788/col202321.051403","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Hundred-watt level all-fiber visible supercontinuum generation from a graded-index multimode fiber
A monolithic visible supercontinuum (SC) source with a record average output power of 204 W and a spectrum ranging from 580 nm to beyond 2400 nm is achieved in a piece of standard telecom graded-index multimode fiber (GRIN MMF) by designing the pumping system. The influence of the GRIN MMF length on the geometrical parameter instability (GPI) effect is analyzed for the first time, to the best of our knowledge, by comparing the SC spectral region dominated by the GPI effect under different fiber lengths. Our work could pave the way for robust, cost-effective, and high-power visible SC sources.
期刊介绍:
Chinese Optics Letters (COL) is an international journal aimed at the rapid dissemination of latest, important discoveries and inventions in all branches of optical science and technology. It is considered to be one of the most important journals in optics in China. It is collected by The Optical Society (OSA) Publishing Digital Library and also indexed by Science Citation Index (SCI), Engineering Index (EI), etc.
COL is distinguished by its short review period (~30 days) and publication period (~100 days).
With its debut in January 2003, COL is published monthly by Chinese Laser Press, and distributed by OSA outside of Chinese Mainland.