拉马努金球码

V. De Brunner, M. Allali
{"title":"拉马努金球码","authors":"V. De Brunner, M. Allali","doi":"10.1109/ACSSC.2000.911057","DOIUrl":null,"url":null,"abstract":"A method for placing points (code vectors) on the unit sphere is presented. This method is based on a Ramanujan set of rotations, and generates an equidistributed system of points. An upper bound for Ramanujan spherical code is presented. This method is flexible and easy to implement as it needs only few transformations to cover the whole unit sphere with spherical caps.","PeriodicalId":10581,"journal":{"name":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","volume":"66 1","pages":"777-780 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Ramanujan spherical code\",\"authors\":\"V. De Brunner, M. Allali\",\"doi\":\"10.1109/ACSSC.2000.911057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method for placing points (code vectors) on the unit sphere is presented. This method is based on a Ramanujan set of rotations, and generates an equidistributed system of points. An upper bound for Ramanujan spherical code is presented. This method is flexible and easy to implement as it needs only few transformations to cover the whole unit sphere with spherical caps.\",\"PeriodicalId\":10581,\"journal\":{\"name\":\"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)\",\"volume\":\"66 1\",\"pages\":\"777-780 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2000.911057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2000.911057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种在单位球面上放置点(码向量)的方法。该方法基于拉马努金旋转集,生成一个等分布的点系统。给出了Ramanujan球码的上界。这种方法灵活且易于实现,因为它只需要很少的变换就可以用球帽覆盖整个单位球体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Ramanujan spherical code
A method for placing points (code vectors) on the unit sphere is presented. This method is based on a Ramanujan set of rotations, and generates an equidistributed system of points. An upper bound for Ramanujan spherical code is presented. This method is flexible and easy to implement as it needs only few transformations to cover the whole unit sphere with spherical caps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信