{"title":"Ti6Al4V激光织构表面对摩擦磨损性能的影响","authors":"M.H. Zul, Mahadzir Ishak@Muhammad, R.M. Nasir, M.H. Aiman, M.M. Quazi","doi":"10.15282/ijame.20.1.2023.02.0787","DOIUrl":null,"url":null,"abstract":"The need for titanium and its alloys has led to a significant increase in commercial manufacturing, although this material’s poor tribological qualities have been a drawback. The present study was to determine the effect of laser-textured surfaces to enhance Ti6Al4V surface wear performance. The sample underwent laser texturing based on pre-set parameter values at 15 W power at a laser scanning speed of 200 mm/s with a frequency of 50 kHz. The surface morphological and topological profile of laser-textured Ti6Al4V was characterized with also the surface microhardness. A comparative appraisal of wear rate (WR) and coefficient of friction (COF) for related samples of as-received Ti6Al4V and laser-textured Ti6Al4V was performed under dry and oil sliding conditions. The results revealed that the formation of oxidation due to the frictional force and plastic displacement plays a role of abrasive to the laser-textured surface and may result in increasing the COF. The wear rate of the laser-textured surface of Ti6Al4V exhibited 88.31% improvement compared to the as-received Ti6Al4V in the dry sliding wear test. It was proved that Ti6Al4V could benefit from LST to gain effectively enhanced wear performance.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Laser-Textured Surface of Ti6Al4V on Frictional Wear Behavior\",\"authors\":\"M.H. Zul, Mahadzir Ishak@Muhammad, R.M. Nasir, M.H. Aiman, M.M. Quazi\",\"doi\":\"10.15282/ijame.20.1.2023.02.0787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need for titanium and its alloys has led to a significant increase in commercial manufacturing, although this material’s poor tribological qualities have been a drawback. The present study was to determine the effect of laser-textured surfaces to enhance Ti6Al4V surface wear performance. The sample underwent laser texturing based on pre-set parameter values at 15 W power at a laser scanning speed of 200 mm/s with a frequency of 50 kHz. The surface morphological and topological profile of laser-textured Ti6Al4V was characterized with also the surface microhardness. A comparative appraisal of wear rate (WR) and coefficient of friction (COF) for related samples of as-received Ti6Al4V and laser-textured Ti6Al4V was performed under dry and oil sliding conditions. The results revealed that the formation of oxidation due to the frictional force and plastic displacement plays a role of abrasive to the laser-textured surface and may result in increasing the COF. The wear rate of the laser-textured surface of Ti6Al4V exhibited 88.31% improvement compared to the as-received Ti6Al4V in the dry sliding wear test. It was proved that Ti6Al4V could benefit from LST to gain effectively enhanced wear performance.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.20.1.2023.02.0787\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.20.1.2023.02.0787","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of Laser-Textured Surface of Ti6Al4V on Frictional Wear Behavior
The need for titanium and its alloys has led to a significant increase in commercial manufacturing, although this material’s poor tribological qualities have been a drawback. The present study was to determine the effect of laser-textured surfaces to enhance Ti6Al4V surface wear performance. The sample underwent laser texturing based on pre-set parameter values at 15 W power at a laser scanning speed of 200 mm/s with a frequency of 50 kHz. The surface morphological and topological profile of laser-textured Ti6Al4V was characterized with also the surface microhardness. A comparative appraisal of wear rate (WR) and coefficient of friction (COF) for related samples of as-received Ti6Al4V and laser-textured Ti6Al4V was performed under dry and oil sliding conditions. The results revealed that the formation of oxidation due to the frictional force and plastic displacement plays a role of abrasive to the laser-textured surface and may result in increasing the COF. The wear rate of the laser-textured surface of Ti6Al4V exhibited 88.31% improvement compared to the as-received Ti6Al4V in the dry sliding wear test. It was proved that Ti6Al4V could benefit from LST to gain effectively enhanced wear performance.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.