布朗曲面中的测地线(布朗图)

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
Jérémie Bettinelli
{"title":"布朗曲面中的测地线(布朗图)","authors":"Jérémie Bettinelli","doi":"10.1214/14-AIHP666","DOIUrl":null,"url":null,"abstract":"We define a class a metric spaces we call Brownian surfaces, arising as the scaling limits of random maps on surfaces with a boundary and we study the geodesics from a uniformly chosen random point. These spaces generalize the well-known Brownian map and our results generalize the properties shown by Le Gall on geodesics in the latter space. We use a different approach based on two ingredients: we first study typical geodesics and then all geodesics by an ''entrapment'' strategy. Our results give geometrical characterizations of some subsets of interest, in terms of geodesics, boundary points and concatenations of geodesics that are not homotopic to 0.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"7 1","pages":"612-646"},"PeriodicalIF":1.2000,"publicationDate":"2014-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Geodesics in Brownian surfaces (Brownian maps)\",\"authors\":\"Jérémie Bettinelli\",\"doi\":\"10.1214/14-AIHP666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a class a metric spaces we call Brownian surfaces, arising as the scaling limits of random maps on surfaces with a boundary and we study the geodesics from a uniformly chosen random point. These spaces generalize the well-known Brownian map and our results generalize the properties shown by Le Gall on geodesics in the latter space. We use a different approach based on two ingredients: we first study typical geodesics and then all geodesics by an ''entrapment'' strategy. Our results give geometrical characterizations of some subsets of interest, in terms of geodesics, boundary points and concatenations of geodesics that are not homotopic to 0.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"7 1\",\"pages\":\"612-646\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2014-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/14-AIHP666\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/14-AIHP666","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 22

摘要

我们定义了一类度量空间,我们称之为布朗曲面,它是有边界的曲面上随机映射的尺度极限,我们从一个均匀选择的随机点研究测地线。这些空间推广了著名的布朗映射,我们的结果推广了Le Gall在测地线上的性质。我们使用了一种基于两种成分的不同方法:我们首先研究典型的测地线,然后通过“捕获”策略研究所有测地线。我们的结果给出了一些感兴趣的子集的几何特征,根据测地线,边界点和不同伦于0的测地线的连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geodesics in Brownian surfaces (Brownian maps)
We define a class a metric spaces we call Brownian surfaces, arising as the scaling limits of random maps on surfaces with a boundary and we study the geodesics from a uniformly chosen random point. These spaces generalize the well-known Brownian map and our results generalize the properties shown by Le Gall on geodesics in the latter space. We use a different approach based on two ingredients: we first study typical geodesics and then all geodesics by an ''entrapment'' strategy. Our results give geometrical characterizations of some subsets of interest, in terms of geodesics, boundary points and concatenations of geodesics that are not homotopic to 0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信