不同天气条件下PV系统支持向量机与递归神经网络MPPT算法的对比评价

M. Nkambule, Ali N. Hasan, Ahmed Ali
{"title":"不同天气条件下PV系统支持向量机与递归神经网络MPPT算法的对比评价","authors":"M. Nkambule, Ali N. Hasan, Ahmed Ali","doi":"10.23919/ELECO47770.2019.8990468","DOIUrl":null,"url":null,"abstract":"The expeditious broadening of Photovoltaic (PV) energy has attracted the private and government precinct world-wide due to the reduction of costs and being cleaner source of energy. However, most of the maximum power point tracking (MPPT) controller are inefficient under rapid change of environmental conditions. Under partial shading conditions (PSC) MPPT controllers fail to track global maximum power point (GMPP). Therefore, it is essential to propose MPPT controller that will be able to locate GMPP. In this study, the two powerful machine learning and deep learning MPPT algorithms are used to force the PV system to operate at higher efficiency under sudden change in solar irradiance and temperature. Support Vector Machine (SVM) and Recurrent Neural Network (RNN) performances are validated and proved using MATLAB SIMULINK simulation software.","PeriodicalId":6611,"journal":{"name":"2019 11th International Conference on Electrical and Electronics Engineering (ELECO)","volume":"90 1","pages":"329-335"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Commensurate Evaluation of Support Vector Machine and Recurrent Neural Network MPPT Algorithm for a PV system under different weather conditions\",\"authors\":\"M. Nkambule, Ali N. Hasan, Ahmed Ali\",\"doi\":\"10.23919/ELECO47770.2019.8990468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The expeditious broadening of Photovoltaic (PV) energy has attracted the private and government precinct world-wide due to the reduction of costs and being cleaner source of energy. However, most of the maximum power point tracking (MPPT) controller are inefficient under rapid change of environmental conditions. Under partial shading conditions (PSC) MPPT controllers fail to track global maximum power point (GMPP). Therefore, it is essential to propose MPPT controller that will be able to locate GMPP. In this study, the two powerful machine learning and deep learning MPPT algorithms are used to force the PV system to operate at higher efficiency under sudden change in solar irradiance and temperature. Support Vector Machine (SVM) and Recurrent Neural Network (RNN) performances are validated and proved using MATLAB SIMULINK simulation software.\",\"PeriodicalId\":6611,\"journal\":{\"name\":\"2019 11th International Conference on Electrical and Electronics Engineering (ELECO)\",\"volume\":\"90 1\",\"pages\":\"329-335\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 11th International Conference on Electrical and Electronics Engineering (ELECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ELECO47770.2019.8990468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Conference on Electrical and Electronics Engineering (ELECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELECO47770.2019.8990468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

光伏能源由于其低廉的成本和清洁的能源特性,在世界范围内迅速扩大,吸引了私人和政府的关注。然而,大多数最大功率点跟踪(MPPT)控制器在快速变化的环境条件下效率低下。在部分遮阳条件下(PSC), MPPT控制器无法跟踪全局最大功率点(GMPP)。因此,有必要提出能够定位GMPP的MPPT控制器。在本研究中,利用两种强大的机器学习和深度学习MPPT算法,迫使光伏系统在太阳辐照度和温度突变的情况下以更高的效率运行。利用MATLAB SIMULINK仿真软件对支持向量机(SVM)和递归神经网络(RNN)的性能进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Commensurate Evaluation of Support Vector Machine and Recurrent Neural Network MPPT Algorithm for a PV system under different weather conditions
The expeditious broadening of Photovoltaic (PV) energy has attracted the private and government precinct world-wide due to the reduction of costs and being cleaner source of energy. However, most of the maximum power point tracking (MPPT) controller are inefficient under rapid change of environmental conditions. Under partial shading conditions (PSC) MPPT controllers fail to track global maximum power point (GMPP). Therefore, it is essential to propose MPPT controller that will be able to locate GMPP. In this study, the two powerful machine learning and deep learning MPPT algorithms are used to force the PV system to operate at higher efficiency under sudden change in solar irradiance and temperature. Support Vector Machine (SVM) and Recurrent Neural Network (RNN) performances are validated and proved using MATLAB SIMULINK simulation software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信