A. L. Sartor, P. H. E. Becker, Stephan Wong, R. Marculescu, A. C. S. Beck
{"title":"基于机器学习的处理器适应性:能量、性能和可靠性","authors":"A. L. Sartor, P. H. E. Becker, Stephan Wong, R. Marculescu, A. C. S. Beck","doi":"10.1109/ISVLSI.2019.00037","DOIUrl":null,"url":null,"abstract":"Adaptive processors can dynamically change their hardware configuration by tuning several knobs that optimize a given metric, according to the current application. However, the complexity of choosing the best setup at runtime increases exponentially as more adaptive resources become available. Therefore, we propose a polymorphic VLIW processor coupled to a machine learning-based decision mechanism that quickly and accurately delivers the best trade-off in terms of energy, performance, and reliability. The proposed system predicts the best processor configuration in 97.37% of the test cases and achieves an efficiency that is close to an oracle (more than 93.30% on all benchmarks).","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"12 1","pages":"158-163"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Learning-Based Processor Adaptability Targeting Energy, Performance, and Reliability\",\"authors\":\"A. L. Sartor, P. H. E. Becker, Stephan Wong, R. Marculescu, A. C. S. Beck\",\"doi\":\"10.1109/ISVLSI.2019.00037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive processors can dynamically change their hardware configuration by tuning several knobs that optimize a given metric, according to the current application. However, the complexity of choosing the best setup at runtime increases exponentially as more adaptive resources become available. Therefore, we propose a polymorphic VLIW processor coupled to a machine learning-based decision mechanism that quickly and accurately delivers the best trade-off in terms of energy, performance, and reliability. The proposed system predicts the best processor configuration in 97.37% of the test cases and achieves an efficiency that is close to an oracle (more than 93.30% on all benchmarks).\",\"PeriodicalId\":6703,\"journal\":{\"name\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"12 1\",\"pages\":\"158-163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2019.00037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning-Based Processor Adaptability Targeting Energy, Performance, and Reliability
Adaptive processors can dynamically change their hardware configuration by tuning several knobs that optimize a given metric, according to the current application. However, the complexity of choosing the best setup at runtime increases exponentially as more adaptive resources become available. Therefore, we propose a polymorphic VLIW processor coupled to a machine learning-based decision mechanism that quickly and accurately delivers the best trade-off in terms of energy, performance, and reliability. The proposed system predicts the best processor configuration in 97.37% of the test cases and achieves an efficiency that is close to an oracle (more than 93.30% on all benchmarks).