基于开关电流的物联网低功耗PIM视觉系统设计

Zheyu Liu, Zichen Fan, Qi Wei, Xing Wu, F. Qiao, Ping Jin, Xinjun Liu, Chengliang Liu, Huazhong Yang
{"title":"基于开关电流的物联网低功耗PIM视觉系统设计","authors":"Zheyu Liu, Zichen Fan, Qi Wei, Xing Wu, F. Qiao, Ping Jin, Xinjun Liu, Chengliang Liu, Huazhong Yang","doi":"10.1109/ISVLSI.2019.00041","DOIUrl":null,"url":null,"abstract":"Neural networks(NN) is becoming dominant in machine learning field for its excellent performance in classification, recognition and so on. However, the huge computation and memory overhead make it hard to implement NN algorithms on the existing platforms with real-time and energy-efficient performance. In this work, a low-power processing-in-memory (PIM) vision system for accelerate binary weight networks is proposed. This architecture utilizes PIM and features an energy-efficient switched current (SI) neuron, employing a network with binary weight and 9-bit activation. Simulation result shows the design occupies 5.82mm2 in SMIC 180nm CMOS technology, which consumes 1.45mW from 1.8V supplies. Our system outperforms the state-of-the-art designs in terms of power consumption and achieves energy efficiency up to 28.25TOPS/W.","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"89 1","pages":"181-186"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of Switched-Current Based Low-Power PIM Vision System for IoT Applications\",\"authors\":\"Zheyu Liu, Zichen Fan, Qi Wei, Xing Wu, F. Qiao, Ping Jin, Xinjun Liu, Chengliang Liu, Huazhong Yang\",\"doi\":\"10.1109/ISVLSI.2019.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks(NN) is becoming dominant in machine learning field for its excellent performance in classification, recognition and so on. However, the huge computation and memory overhead make it hard to implement NN algorithms on the existing platforms with real-time and energy-efficient performance. In this work, a low-power processing-in-memory (PIM) vision system for accelerate binary weight networks is proposed. This architecture utilizes PIM and features an energy-efficient switched current (SI) neuron, employing a network with binary weight and 9-bit activation. Simulation result shows the design occupies 5.82mm2 in SMIC 180nm CMOS technology, which consumes 1.45mW from 1.8V supplies. Our system outperforms the state-of-the-art designs in terms of power consumption and achieves energy efficiency up to 28.25TOPS/W.\",\"PeriodicalId\":6703,\"journal\":{\"name\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"89 1\",\"pages\":\"181-186\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2019.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

神经网络以其在分类、识别等方面的优异表现,在机器学习领域占据主导地位。然而,巨大的计算和内存开销使得在现有平台上实现具有实时性和节能性能的神经网络算法变得困难。本文提出了一种用于加速二值权网络的低功耗内存处理(PIM)视觉系统。该架构利用PIM,并具有节能的开关电流(SI)神经元,采用具有二进制权值和9位激活的网络。仿真结果表明,该设计采用中芯国际180nm CMOS工艺,占地5.82mm2, 1.8V电源功耗1.45mW。我们的系统在功耗方面优于最先进的设计,能源效率高达28.25TOPS/W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Switched-Current Based Low-Power PIM Vision System for IoT Applications
Neural networks(NN) is becoming dominant in machine learning field for its excellent performance in classification, recognition and so on. However, the huge computation and memory overhead make it hard to implement NN algorithms on the existing platforms with real-time and energy-efficient performance. In this work, a low-power processing-in-memory (PIM) vision system for accelerate binary weight networks is proposed. This architecture utilizes PIM and features an energy-efficient switched current (SI) neuron, employing a network with binary weight and 9-bit activation. Simulation result shows the design occupies 5.82mm2 in SMIC 180nm CMOS technology, which consumes 1.45mW from 1.8V supplies. Our system outperforms the state-of-the-art designs in terms of power consumption and achieves energy efficiency up to 28.25TOPS/W.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信