基于形态学分割的小波变换提高白细胞分类检测精度

Burla Gopi Raju, N. S
{"title":"基于形态学分割的小波变换提高白细胞分类检测精度","authors":"Burla Gopi Raju, N. S","doi":"10.1109/iciptm54933.2022.9753927","DOIUrl":null,"url":null,"abstract":"Aim: The ultimate aim of this research work is to improvize the accuracy & specificity of automatic counting of Cancer cells, detection, classification of cancer cells using innovative white blood cancer detection methodology. Materials and Methods: Determined sample size using GPower is 10 for each group (Power of 0.80 and alpha value of 0.05) and groups are categorized as Morphological segmentation classifier (Group 1) and Wavelet transform classifier (Group 2). 70 % of the images are utilized for training and 30 % are used for verification and validation in performance analysis. Result: Morphological segmentation algorithm achieved improved accuracy (97.77%) compared with the Wavelet transform algorithm with an accuracy of (77.77%). Independent sample T-test has been analyzed and achieved a significance of 0.0427 ($\\mathrm{p} < 0.05$) for accuracy and 0.006 ($\\mathrm{p} < 0.05$) for specificity. Conclusion: Morphological segmentation algorithm provides better accuracy compared with the wavelet algorithm.","PeriodicalId":6810,"journal":{"name":"2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM)","volume":"29 1","pages":"622-627"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Accuracy in Classification and Detection of White Blood Cancer Cells using Wavelet Transform over Morphological Segmentation\",\"authors\":\"Burla Gopi Raju, N. S\",\"doi\":\"10.1109/iciptm54933.2022.9753927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim: The ultimate aim of this research work is to improvize the accuracy & specificity of automatic counting of Cancer cells, detection, classification of cancer cells using innovative white blood cancer detection methodology. Materials and Methods: Determined sample size using GPower is 10 for each group (Power of 0.80 and alpha value of 0.05) and groups are categorized as Morphological segmentation classifier (Group 1) and Wavelet transform classifier (Group 2). 70 % of the images are utilized for training and 30 % are used for verification and validation in performance analysis. Result: Morphological segmentation algorithm achieved improved accuracy (97.77%) compared with the Wavelet transform algorithm with an accuracy of (77.77%). Independent sample T-test has been analyzed and achieved a significance of 0.0427 ($\\\\mathrm{p} < 0.05$) for accuracy and 0.006 ($\\\\mathrm{p} < 0.05$) for specificity. Conclusion: Morphological segmentation algorithm provides better accuracy compared with the wavelet algorithm.\",\"PeriodicalId\":6810,\"journal\":{\"name\":\"2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM)\",\"volume\":\"29 1\",\"pages\":\"622-627\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iciptm54933.2022.9753927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iciptm54933.2022.9753927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究工作的最终目的是利用创新的白细胞癌检测方法提高肿瘤细胞自动计数、检测和分类的准确性和特异性。材料与方法:使用GPower确定每组的样本量为10 (Power为0.80,alpha值为0.05),并将组分为形态分割分类器(组1)和小波变换分类器(组2)。70%的图像用于训练,30%用于性能分析中的验证和验证。结果:形态分割算法的分割准确率为97.77%,优于小波变换算法的分割准确率77.77%。经独立样本t检验分析,准确性显著性为0.0427 ($\ mathm {p} < 0.05$),特异性显著性为0.006 ($\ mathm {p} < 0.05$)。结论:形态分割算法比小波算法具有更好的分割精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Accuracy in Classification and Detection of White Blood Cancer Cells using Wavelet Transform over Morphological Segmentation
Aim: The ultimate aim of this research work is to improvize the accuracy & specificity of automatic counting of Cancer cells, detection, classification of cancer cells using innovative white blood cancer detection methodology. Materials and Methods: Determined sample size using GPower is 10 for each group (Power of 0.80 and alpha value of 0.05) and groups are categorized as Morphological segmentation classifier (Group 1) and Wavelet transform classifier (Group 2). 70 % of the images are utilized for training and 30 % are used for verification and validation in performance analysis. Result: Morphological segmentation algorithm achieved improved accuracy (97.77%) compared with the Wavelet transform algorithm with an accuracy of (77.77%). Independent sample T-test has been analyzed and achieved a significance of 0.0427 ($\mathrm{p} < 0.05$) for accuracy and 0.006 ($\mathrm{p} < 0.05$) for specificity. Conclusion: Morphological segmentation algorithm provides better accuracy compared with the wavelet algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信