单石墨烯-硅晶体管的选择性气体传感

A. Balandin, S. Rumyantsev, G. Liu, M. Shur, R. Potyrailo
{"title":"单石墨烯-硅晶体管的选择性气体传感","authors":"A. Balandin, S. Rumyantsev, G. Liu, M. Shur, R. Potyrailo","doi":"10.1109/SNW.2012.6243283","DOIUrl":null,"url":null,"abstract":"The low-frequency 1/f noise in graphene transistors has been studied extensively owing to the proposed graphene applications in analog devices and communication systems [1-5]. The studies were motivated by the fact that the low-frequency noise can be up-converted by device nonlinearity and contribute to the phase noise of the system. Similarly, the sensor sensitivity is often limited by the electronic low-frequency noise. Therefore, noise is usually considered as one of the main limiting factors for the device or overall system operation. However, the electronic noise spectrum itself can be used as a sensing parameter increasing the sensor sensitivity and selectivity. Here, we show that vapors of different chemicals produce distinguishably different effects on the low-frequency noise spectra of the graphene-on-Si transistor. Our study showed that some gases change the electrical resistance of pristine graphene devices without changing their low-frequency noise spectra while other gases modify the noise spectra by inducing Lorentzian components with distinctive features. The characteristic corner frequency fC of the Lorentzian noise bulges in graphene devices is different for different chemicals and varies from fC=10 - 20 Hz for tetrahydrofuran to fC=1300 - 1600 Hz for chloroform. We tested the selected set of chemicals vapors on different graphene device samples and alternated different vapors for the same samples. The obtained results indicate that 1/f noise in combination with other sensing parameters can allow one to achieve the selective gas sensing with a single pristine graphene transistor. Our method of gas sensing with graphene does not require graphene surface functionalization or fabrication of an array of the devices with each tuned to a certain chemical. The observation of the Lorentzian components in the vapor-exposed graphene can also help in developing an accurate theoretical description of the noise mechanism in graphene.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"54 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective gas sensing with a single graphene-on-silicon transistor\",\"authors\":\"A. Balandin, S. Rumyantsev, G. Liu, M. Shur, R. Potyrailo\",\"doi\":\"10.1109/SNW.2012.6243283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The low-frequency 1/f noise in graphene transistors has been studied extensively owing to the proposed graphene applications in analog devices and communication systems [1-5]. The studies were motivated by the fact that the low-frequency noise can be up-converted by device nonlinearity and contribute to the phase noise of the system. Similarly, the sensor sensitivity is often limited by the electronic low-frequency noise. Therefore, noise is usually considered as one of the main limiting factors for the device or overall system operation. However, the electronic noise spectrum itself can be used as a sensing parameter increasing the sensor sensitivity and selectivity. Here, we show that vapors of different chemicals produce distinguishably different effects on the low-frequency noise spectra of the graphene-on-Si transistor. Our study showed that some gases change the electrical resistance of pristine graphene devices without changing their low-frequency noise spectra while other gases modify the noise spectra by inducing Lorentzian components with distinctive features. The characteristic corner frequency fC of the Lorentzian noise bulges in graphene devices is different for different chemicals and varies from fC=10 - 20 Hz for tetrahydrofuran to fC=1300 - 1600 Hz for chloroform. We tested the selected set of chemicals vapors on different graphene device samples and alternated different vapors for the same samples. The obtained results indicate that 1/f noise in combination with other sensing parameters can allow one to achieve the selective gas sensing with a single pristine graphene transistor. Our method of gas sensing with graphene does not require graphene surface functionalization or fabrication of an array of the devices with each tuned to a certain chemical. The observation of the Lorentzian components in the vapor-exposed graphene can also help in developing an accurate theoretical description of the noise mechanism in graphene.\",\"PeriodicalId\":6402,\"journal\":{\"name\":\"2012 IEEE Silicon Nanoelectronics Workshop (SNW)\",\"volume\":\"54 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Silicon Nanoelectronics Workshop (SNW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNW.2012.6243283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2012.6243283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于石墨烯在模拟器件和通信系统中的应用,石墨烯晶体管中的低频1/f噪声已被广泛研究[1-5]。研究的动机是低频噪声会被器件非线性上转换,并导致系统的相位噪声。同样,传感器的灵敏度也常常受到电子低频噪声的限制。因此,噪声通常被认为是设备或整个系统运行的主要限制因素之一。然而,电子噪声谱本身可以作为传感参数,提高了传感器的灵敏度和选择性。在这里,我们展示了不同化学物质的蒸汽对硅基石墨烯晶体管的低频噪声谱产生明显不同的影响。我们的研究表明,一些气体改变原始石墨烯器件的电阻而不改变其低频噪声谱,而其他气体通过诱导具有独特特征的洛伦兹分量来改变噪声谱。石墨烯器件中洛伦兹噪声凸起的特征角频率fC对于不同的化学物质是不同的,从四氢呋喃的fC=10 - 20 Hz到氯仿的fC=1300 - 1600 Hz不等。我们在不同的石墨烯器件样品上测试了选定的一组化学蒸汽,并在相同的样品上交替使用不同的蒸汽。结果表明,1/f噪声与其他传感参数相结合,可以使用单个原始石墨烯晶体管实现选择性气体传感。我们的石墨烯气敏方法不需要石墨烯表面功能化,也不需要制造一组设备,每个设备都有特定的化学物质。对蒸汽暴露石墨烯中的洛伦兹分量的观察也有助于对石墨烯中的噪声机制进行准确的理论描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selective gas sensing with a single graphene-on-silicon transistor
The low-frequency 1/f noise in graphene transistors has been studied extensively owing to the proposed graphene applications in analog devices and communication systems [1-5]. The studies were motivated by the fact that the low-frequency noise can be up-converted by device nonlinearity and contribute to the phase noise of the system. Similarly, the sensor sensitivity is often limited by the electronic low-frequency noise. Therefore, noise is usually considered as one of the main limiting factors for the device or overall system operation. However, the electronic noise spectrum itself can be used as a sensing parameter increasing the sensor sensitivity and selectivity. Here, we show that vapors of different chemicals produce distinguishably different effects on the low-frequency noise spectra of the graphene-on-Si transistor. Our study showed that some gases change the electrical resistance of pristine graphene devices without changing their low-frequency noise spectra while other gases modify the noise spectra by inducing Lorentzian components with distinctive features. The characteristic corner frequency fC of the Lorentzian noise bulges in graphene devices is different for different chemicals and varies from fC=10 - 20 Hz for tetrahydrofuran to fC=1300 - 1600 Hz for chloroform. We tested the selected set of chemicals vapors on different graphene device samples and alternated different vapors for the same samples. The obtained results indicate that 1/f noise in combination with other sensing parameters can allow one to achieve the selective gas sensing with a single pristine graphene transistor. Our method of gas sensing with graphene does not require graphene surface functionalization or fabrication of an array of the devices with each tuned to a certain chemical. The observation of the Lorentzian components in the vapor-exposed graphene can also help in developing an accurate theoretical description of the noise mechanism in graphene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信