标量属性与时间序列相结合的多变量时间序列分类模式

György Fekete, Habil. Andras Molnar
{"title":"标量属性与时间序列相结合的多变量时间序列分类模式","authors":"György Fekete, Habil. Andras Molnar","doi":"10.1109/CINTI-MACRo57952.2022.10029501","DOIUrl":null,"url":null,"abstract":"In this paper, we propose new patterns which combine attribute and time series data for classifications to soften or solve the overlapping classes problem. The solution was created for medical human gait analysis, where both types of input data are available.","PeriodicalId":18535,"journal":{"name":"Micro","volume":"55 1","pages":"000335-000340"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalar attributes and time series combining patterns for multivariate time series classification\",\"authors\":\"György Fekete, Habil. Andras Molnar\",\"doi\":\"10.1109/CINTI-MACRo57952.2022.10029501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose new patterns which combine attribute and time series data for classifications to soften or solve the overlapping classes problem. The solution was created for medical human gait analysis, where both types of input data are available.\",\"PeriodicalId\":18535,\"journal\":{\"name\":\"Micro\",\"volume\":\"55 1\",\"pages\":\"000335-000340\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINTI-MACRo57952.2022.10029501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINTI-MACRo57952.2022.10029501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种结合属性数据和时间序列数据进行分类的新模式,以缓解或解决类重叠问题。该解决方案是为医学人类步态分析而创建的,其中两种类型的输入数据都是可用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalar attributes and time series combining patterns for multivariate time series classification
In this paper, we propose new patterns which combine attribute and time series data for classifications to soften or solve the overlapping classes problem. The solution was created for medical human gait analysis, where both types of input data are available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信