基于机器学习的光伏组件高通量室内测试光谱条件分类

E. Looney, L. Haohui, Zekun Ren, T. Buonassisi, I. M. Peters
{"title":"基于机器学习的光伏组件高通量室内测试光谱条件分类","authors":"E. Looney, L. Haohui, Zekun Ren, T. Buonassisi, I. M. Peters","doi":"10.1109/PVSC40753.2019.9198982","DOIUrl":null,"url":null,"abstract":"High-throughput testing of solar modules to accurately predict energy yield (EY) is increasingly important as more of the power grid runs on photovoltaics (PV). Modules are sold based on power ratings measured under standard testing conditions, not fully considering environmental conditions of the real world. In this work, we use the k-means algorithm to extract the best representative conditions of the environment that minimizes error in EY. The work presented here is a fully scoped proof-of-concept demonstrated on a year of spectral data clustered and analyzed for every month of 2017 in Boulder, Colorado. Preliminary results demonstrate a decrease in 5 percent relative error in energy yield predictions between one standard testing condition and up to seven clusters found with this method. This can be generalized to more locations around the world as a powerful tool for EY estimation. These results demonstrate the capacity for high throughput, accurate EY prediction using clustered conditions.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"59 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-based Classification of Spectral Conditions for High-Throughput Indoor Testing of Photovoltaic Modules\",\"authors\":\"E. Looney, L. Haohui, Zekun Ren, T. Buonassisi, I. M. Peters\",\"doi\":\"10.1109/PVSC40753.2019.9198982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-throughput testing of solar modules to accurately predict energy yield (EY) is increasingly important as more of the power grid runs on photovoltaics (PV). Modules are sold based on power ratings measured under standard testing conditions, not fully considering environmental conditions of the real world. In this work, we use the k-means algorithm to extract the best representative conditions of the environment that minimizes error in EY. The work presented here is a fully scoped proof-of-concept demonstrated on a year of spectral data clustered and analyzed for every month of 2017 in Boulder, Colorado. Preliminary results demonstrate a decrease in 5 percent relative error in energy yield predictions between one standard testing condition and up to seven clusters found with this method. This can be generalized to more locations around the world as a powerful tool for EY estimation. These results demonstrate the capacity for high throughput, accurate EY prediction using clustered conditions.\",\"PeriodicalId\":6749,\"journal\":{\"name\":\"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"59 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC40753.2019.9198982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC40753.2019.9198982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着越来越多的电网运行在光伏(PV)上,对太阳能组件进行高通量测试以准确预测能源产量(EY)变得越来越重要。模块的销售基于在标准测试条件下测量的额定功率,而没有充分考虑现实世界的环境条件。在这项工作中,我们使用k-means算法来提取环境的最佳代表性条件,使EY中的误差最小化。这里展示的工作是一项全范围的概念验证,该概念验证是在科罗拉多州博尔德对2017年每个月的光谱数据进行聚类和分析的基础上进行的。初步结果表明,在一个标准测试条件和使用该方法发现的多达七个簇之间,发电量预测的相对误差减少了5%。这可以推广到世界各地的更多地点,作为EY估计的强大工具。这些结果证明了使用聚类条件进行高吞吐量,准确的EY预测的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning-based Classification of Spectral Conditions for High-Throughput Indoor Testing of Photovoltaic Modules
High-throughput testing of solar modules to accurately predict energy yield (EY) is increasingly important as more of the power grid runs on photovoltaics (PV). Modules are sold based on power ratings measured under standard testing conditions, not fully considering environmental conditions of the real world. In this work, we use the k-means algorithm to extract the best representative conditions of the environment that minimizes error in EY. The work presented here is a fully scoped proof-of-concept demonstrated on a year of spectral data clustered and analyzed for every month of 2017 in Boulder, Colorado. Preliminary results demonstrate a decrease in 5 percent relative error in energy yield predictions between one standard testing condition and up to seven clusters found with this method. This can be generalized to more locations around the world as a powerful tool for EY estimation. These results demonstrate the capacity for high throughput, accurate EY prediction using clustered conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信