{"title":"Micromax/重晶石混合钻井液实现WBM最大泥浆比重,并成功应用于深部高温高压环境","authors":"Rami Sindi, Rafael Pino, A. Gadalla, Sunil Sharma","doi":"10.2118/197594-ms","DOIUrl":null,"url":null,"abstract":"\n The use of water based mud (WBM) in drilling applications under extreme Pressure and temperature has been increasing rapidly in the drilling industry over the past few years. It is now more crucial to close the technological gap that presents challenges towards developing high Density water based mud systems for High Temperature High Pressure (HPHT) wells. These challenges include rheology control, weighting agents sagging tendencies associated with high down hole temperature, In addition to the high solids loading which limits the free water availability impacting polymers performance and therefore, rheology, HPHT fluid loss and filter cake thickness control become an issue that requires special optimization and extra field maintenance. Operating under narrow margin between pore pressure and fracture initiation pressures adds to the complexity of the drilling fluids maintenance where a slight change in the bottom hole pressure (BHP) could lead to significant increase in the non-productive time \"NPT\" due to the time spent in solving possible fluid losses and kicks.\n This paper discusses the outstanding performance achieved in a deep HPHT formation drilled using water base mud weighted with Manganese Tetroxide (Micromax)/Barite blend, from planning and extensive lab testing to field implementation. This paper also describes and compares the methodology of using Micromax/Barite versus using barite only as the weighting agent and finally the field results.","PeriodicalId":11328,"journal":{"name":"Day 4 Thu, November 14, 2019","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Achievement of Maximum Mud Weights in WBM with Micromax/Barite Blend and its Successful Implementation in Deep HPHT Challenging Environment\",\"authors\":\"Rami Sindi, Rafael Pino, A. Gadalla, Sunil Sharma\",\"doi\":\"10.2118/197594-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The use of water based mud (WBM) in drilling applications under extreme Pressure and temperature has been increasing rapidly in the drilling industry over the past few years. It is now more crucial to close the technological gap that presents challenges towards developing high Density water based mud systems for High Temperature High Pressure (HPHT) wells. These challenges include rheology control, weighting agents sagging tendencies associated with high down hole temperature, In addition to the high solids loading which limits the free water availability impacting polymers performance and therefore, rheology, HPHT fluid loss and filter cake thickness control become an issue that requires special optimization and extra field maintenance. Operating under narrow margin between pore pressure and fracture initiation pressures adds to the complexity of the drilling fluids maintenance where a slight change in the bottom hole pressure (BHP) could lead to significant increase in the non-productive time \\\"NPT\\\" due to the time spent in solving possible fluid losses and kicks.\\n This paper discusses the outstanding performance achieved in a deep HPHT formation drilled using water base mud weighted with Manganese Tetroxide (Micromax)/Barite blend, from planning and extensive lab testing to field implementation. This paper also describes and compares the methodology of using Micromax/Barite versus using barite only as the weighting agent and finally the field results.\",\"PeriodicalId\":11328,\"journal\":{\"name\":\"Day 4 Thu, November 14, 2019\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, November 14, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/197594-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, November 14, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/197594-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Achievement of Maximum Mud Weights in WBM with Micromax/Barite Blend and its Successful Implementation in Deep HPHT Challenging Environment
The use of water based mud (WBM) in drilling applications under extreme Pressure and temperature has been increasing rapidly in the drilling industry over the past few years. It is now more crucial to close the technological gap that presents challenges towards developing high Density water based mud systems for High Temperature High Pressure (HPHT) wells. These challenges include rheology control, weighting agents sagging tendencies associated with high down hole temperature, In addition to the high solids loading which limits the free water availability impacting polymers performance and therefore, rheology, HPHT fluid loss and filter cake thickness control become an issue that requires special optimization and extra field maintenance. Operating under narrow margin between pore pressure and fracture initiation pressures adds to the complexity of the drilling fluids maintenance where a slight change in the bottom hole pressure (BHP) could lead to significant increase in the non-productive time "NPT" due to the time spent in solving possible fluid losses and kicks.
This paper discusses the outstanding performance achieved in a deep HPHT formation drilled using water base mud weighted with Manganese Tetroxide (Micromax)/Barite blend, from planning and extensive lab testing to field implementation. This paper also describes and compares the methodology of using Micromax/Barite versus using barite only as the weighting agent and finally the field results.