{"title":"磷富营养化和缓解战略","authors":"L. Ngatia, Robert Taylor","doi":"10.5772/INTECHOPEN.79173","DOIUrl":null,"url":null,"abstract":"Phosphorus (P) eutrophication in the aquatic system is a global problem. With a negative impact on health industry, food security, tourism industry, ecosystem health and economy. The sources of P include both point and nonpoint sources. Controlling P inflow from point sources to aquatic systems have been more manageable, however controlling nonpoint P sources especially agricultural sources remains a challenge. The forms of P include both organic and inorganic. Runoff and soil erosion are the major agents of translocating P to the aquatic system in form of particulate and dissolved P. Excessive P cause growth of algae bloom, anoxic conditions, altering plant species composition and biomass, leading to fish kill, food webs disruption, toxins production and recreational areas degradation. Phosphorus eutrophication mitigation strategies include controlling nutrient loads and ecosystem restoration. Point P sources could be controlled through restructuring industrial layout. Controlling nonpoint nutrient loads need catchment management to focus on farm scale, field scale and catchment scale management as well as employ human intervention which includes ferric dosing, on farm biochar application and flushing and dredging of floor deposits. Ecosystem restoration for eutrophication mitigation involves phytoremediation, wetland restoration, riparian area restoration and river/lake maintenance/restoration. Combination of interventions could be required for successful eutrophication mitigation.","PeriodicalId":20030,"journal":{"name":"Phosphorus - Recovery and Recycling","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Phosphorus Eutrophication and Mitigation Strategies\",\"authors\":\"L. Ngatia, Robert Taylor\",\"doi\":\"10.5772/INTECHOPEN.79173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phosphorus (P) eutrophication in the aquatic system is a global problem. With a negative impact on health industry, food security, tourism industry, ecosystem health and economy. The sources of P include both point and nonpoint sources. Controlling P inflow from point sources to aquatic systems have been more manageable, however controlling nonpoint P sources especially agricultural sources remains a challenge. The forms of P include both organic and inorganic. Runoff and soil erosion are the major agents of translocating P to the aquatic system in form of particulate and dissolved P. Excessive P cause growth of algae bloom, anoxic conditions, altering plant species composition and biomass, leading to fish kill, food webs disruption, toxins production and recreational areas degradation. Phosphorus eutrophication mitigation strategies include controlling nutrient loads and ecosystem restoration. Point P sources could be controlled through restructuring industrial layout. Controlling nonpoint nutrient loads need catchment management to focus on farm scale, field scale and catchment scale management as well as employ human intervention which includes ferric dosing, on farm biochar application and flushing and dredging of floor deposits. Ecosystem restoration for eutrophication mitigation involves phytoremediation, wetland restoration, riparian area restoration and river/lake maintenance/restoration. Combination of interventions could be required for successful eutrophication mitigation.\",\"PeriodicalId\":20030,\"journal\":{\"name\":\"Phosphorus - Recovery and Recycling\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phosphorus - Recovery and Recycling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.79173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phosphorus - Recovery and Recycling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.79173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Phosphorus Eutrophication and Mitigation Strategies
Phosphorus (P) eutrophication in the aquatic system is a global problem. With a negative impact on health industry, food security, tourism industry, ecosystem health and economy. The sources of P include both point and nonpoint sources. Controlling P inflow from point sources to aquatic systems have been more manageable, however controlling nonpoint P sources especially agricultural sources remains a challenge. The forms of P include both organic and inorganic. Runoff and soil erosion are the major agents of translocating P to the aquatic system in form of particulate and dissolved P. Excessive P cause growth of algae bloom, anoxic conditions, altering plant species composition and biomass, leading to fish kill, food webs disruption, toxins production and recreational areas degradation. Phosphorus eutrophication mitigation strategies include controlling nutrient loads and ecosystem restoration. Point P sources could be controlled through restructuring industrial layout. Controlling nonpoint nutrient loads need catchment management to focus on farm scale, field scale and catchment scale management as well as employ human intervention which includes ferric dosing, on farm biochar application and flushing and dredging of floor deposits. Ecosystem restoration for eutrophication mitigation involves phytoremediation, wetland restoration, riparian area restoration and river/lake maintenance/restoration. Combination of interventions could be required for successful eutrophication mitigation.