{"title":"基于相对小波能量的脑机接口设计特征选择","authors":"Haibin Zhao, Wang Xu, Wang Hong","doi":"10.1109/ICBBE.2008.687","DOIUrl":null,"url":null,"abstract":"The critical issues in brain-computer interface (BCI) research is how to translate a person's intention into brain signals for controlling computer program or wheelchair. In this paper, we used a new method: relative wavelet energy (RWE) for feature selection in BCIs design and linear discriminant analysis (LDA) and support vector machine (SVM) were utilized to classify the pattern of left and right hand movement imagery. Its performance was evaluated by mutual information (MI) using the data set Mb of BCI Competition III. This technology provides another useful way to EEG feature selection in BCIs research.","PeriodicalId":6399,"journal":{"name":"2008 2nd International Conference on Bioinformatics and Biomedical Engineering","volume":"33 1","pages":"1434-1437"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Feature Selection using Relative Wavelet Energy for Brain-Computer Interface Design\",\"authors\":\"Haibin Zhao, Wang Xu, Wang Hong\",\"doi\":\"10.1109/ICBBE.2008.687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The critical issues in brain-computer interface (BCI) research is how to translate a person's intention into brain signals for controlling computer program or wheelchair. In this paper, we used a new method: relative wavelet energy (RWE) for feature selection in BCIs design and linear discriminant analysis (LDA) and support vector machine (SVM) were utilized to classify the pattern of left and right hand movement imagery. Its performance was evaluated by mutual information (MI) using the data set Mb of BCI Competition III. This technology provides another useful way to EEG feature selection in BCIs research.\",\"PeriodicalId\":6399,\"journal\":{\"name\":\"2008 2nd International Conference on Bioinformatics and Biomedical Engineering\",\"volume\":\"33 1\",\"pages\":\"1434-1437\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 2nd International Conference on Bioinformatics and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBBE.2008.687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 2nd International Conference on Bioinformatics and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBBE.2008.687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feature Selection using Relative Wavelet Energy for Brain-Computer Interface Design
The critical issues in brain-computer interface (BCI) research is how to translate a person's intention into brain signals for controlling computer program or wheelchair. In this paper, we used a new method: relative wavelet energy (RWE) for feature selection in BCIs design and linear discriminant analysis (LDA) and support vector machine (SVM) were utilized to classify the pattern of left and right hand movement imagery. Its performance was evaluated by mutual information (MI) using the data set Mb of BCI Competition III. This technology provides another useful way to EEG feature selection in BCIs research.