木质素的来源及应用研究进展

F. J. Gomes, Rafael Eloy de Souza, E. O. Brito, R. Lelis
{"title":"木质素的来源及应用研究进展","authors":"F. J. Gomes, Rafael Eloy de Souza, E. O. Brito, R. Lelis","doi":"10.15406/jabb.2020.07.00222","DOIUrl":null,"url":null,"abstract":"The efficient use of renewable resources has become a driving force for the worldwide industry aiming to improve the competitiveness. Considering the available natural raw materials, the lignin present in the lignocellulosic biomass such as trees, is the unique natural polymer that presents aromatic rings in its constitution. In this way, this review details the structure of native lignin as well as the technical lignin, including information on the characteristics that this polymer must have for the most promissory applications as feedstock for bioproducts. Approximately 50 million tons of lignin are produced worldwide annually, of which 98% to 99% is incinerated to produce energy and steam in the pulp mills. Only a small fraction of the lignin, derived mainly from the sulfite pulp mill is recovered commercially in a biorefinery concept. There are many opportunities for producing high value-added products from technical lignin, mainly considering the pulp mills growing, and environmental restrictions using non-renewable raw materials. The currently trend have shown that technical lignin sources may also be used as feedstock for phenol derived products, technical carbons, fuels, and adhesives. On the other hand, there are some technological hurdles must be overcome to make these uses feasible.","PeriodicalId":15033,"journal":{"name":"Journal of Applied Biotechnology & Bioengineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"A review on lignin sources and uses\",\"authors\":\"F. J. Gomes, Rafael Eloy de Souza, E. O. Brito, R. Lelis\",\"doi\":\"10.15406/jabb.2020.07.00222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficient use of renewable resources has become a driving force for the worldwide industry aiming to improve the competitiveness. Considering the available natural raw materials, the lignin present in the lignocellulosic biomass such as trees, is the unique natural polymer that presents aromatic rings in its constitution. In this way, this review details the structure of native lignin as well as the technical lignin, including information on the characteristics that this polymer must have for the most promissory applications as feedstock for bioproducts. Approximately 50 million tons of lignin are produced worldwide annually, of which 98% to 99% is incinerated to produce energy and steam in the pulp mills. Only a small fraction of the lignin, derived mainly from the sulfite pulp mill is recovered commercially in a biorefinery concept. There are many opportunities for producing high value-added products from technical lignin, mainly considering the pulp mills growing, and environmental restrictions using non-renewable raw materials. The currently trend have shown that technical lignin sources may also be used as feedstock for phenol derived products, technical carbons, fuels, and adhesives. On the other hand, there are some technological hurdles must be overcome to make these uses feasible.\",\"PeriodicalId\":15033,\"journal\":{\"name\":\"Journal of Applied Biotechnology & Bioengineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biotechnology & Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15406/jabb.2020.07.00222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biotechnology & Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/jabb.2020.07.00222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

可再生资源的高效利用已成为全球工业提高竞争力的动力。考虑到可用的天然原料,木质素存在于木质纤维素生物质(如树木)中,是其结构中呈现芳香环的独特天然聚合物。通过这种方式,本文详细介绍了天然木质素和技术木质素的结构,包括这种聚合物作为生物制品原料必须具有的最具前景的特性的信息。全世界每年大约生产5000万吨木质素,其中98%至99%在纸浆厂焚烧以产生能源和蒸汽。只有一小部分主要来自亚硫酸盐纸浆厂的木质素在生物炼制概念中被商业回收。从技术木质素生产高附加值产品有很多机会,主要考虑到纸浆厂的增长,以及使用不可再生原料的环境限制。目前的趋势表明,技术木质素源也可以用作苯酚衍生产品、技术碳、燃料和粘合剂的原料。另一方面,要使这些用途可行,必须克服一些技术障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review on lignin sources and uses
The efficient use of renewable resources has become a driving force for the worldwide industry aiming to improve the competitiveness. Considering the available natural raw materials, the lignin present in the lignocellulosic biomass such as trees, is the unique natural polymer that presents aromatic rings in its constitution. In this way, this review details the structure of native lignin as well as the technical lignin, including information on the characteristics that this polymer must have for the most promissory applications as feedstock for bioproducts. Approximately 50 million tons of lignin are produced worldwide annually, of which 98% to 99% is incinerated to produce energy and steam in the pulp mills. Only a small fraction of the lignin, derived mainly from the sulfite pulp mill is recovered commercially in a biorefinery concept. There are many opportunities for producing high value-added products from technical lignin, mainly considering the pulp mills growing, and environmental restrictions using non-renewable raw materials. The currently trend have shown that technical lignin sources may also be used as feedstock for phenol derived products, technical carbons, fuels, and adhesives. On the other hand, there are some technological hurdles must be overcome to make these uses feasible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信