开发具有可编程缺陷的标准样品,用于评估7纳米及更小节点的图案检测工具

IF 1.5 2区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
S. Iida, T. Nagai, T. Uchiyama
{"title":"开发具有可编程缺陷的标准样品,用于评估7纳米及更小节点的图案检测工具","authors":"S. Iida, T. Nagai, T. Uchiyama","doi":"10.1117/1.JMM.18.3.033503","DOIUrl":null,"url":null,"abstract":"Abstract. Background: Continued shrinkage of pattern size has caused difficulties in detecting small defects. Multibeam scanning electron microscopy (SEM) is a potential method for pattern inspection below 7-nm node. Performance of the tool depends on charge control, resolution, and defect detection capability. Aim: The goal of this study is to develop a method for evaluating the performance of multibeam SEM for 7-nm nodes. Approach: By developing various standard samples with programmed defects (PDs) on 12 in. Si wafer, we evaluate the performance of multibeam SEM. Results: The first wafer had line and space (LS) patterns and PDs with varying contrast. A second wafer had various shaped small PDs, ∼5  nm in size in 16- to 12-nm half-pitch LS patterns. A third wafer with extremely small PDs of around 1 nm was fabricated in LS patterns with ultralow line-edge roughness (LER) of less than 1 nm. The first wafer was effective for charge control, whereas second and third wafer confirms resolution and defect detection capability. Conclusions: A set of minimum three standard wafer samples is effective to confirm the performance of multibeam SEM for below 7-nm nodes. Besides, we proposed a method to verify the LER values measured by a critical-dimension SEM.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"14 1","pages":"033503 - 033503"},"PeriodicalIF":1.5000,"publicationDate":"2019-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Development of standard samples with programmed defects for evaluation of pattern inspection tools for 7-nm and smaller nodes\",\"authors\":\"S. Iida, T. Nagai, T. Uchiyama\",\"doi\":\"10.1117/1.JMM.18.3.033503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Background: Continued shrinkage of pattern size has caused difficulties in detecting small defects. Multibeam scanning electron microscopy (SEM) is a potential method for pattern inspection below 7-nm node. Performance of the tool depends on charge control, resolution, and defect detection capability. Aim: The goal of this study is to develop a method for evaluating the performance of multibeam SEM for 7-nm nodes. Approach: By developing various standard samples with programmed defects (PDs) on 12 in. Si wafer, we evaluate the performance of multibeam SEM. Results: The first wafer had line and space (LS) patterns and PDs with varying contrast. A second wafer had various shaped small PDs, ∼5  nm in size in 16- to 12-nm half-pitch LS patterns. A third wafer with extremely small PDs of around 1 nm was fabricated in LS patterns with ultralow line-edge roughness (LER) of less than 1 nm. The first wafer was effective for charge control, whereas second and third wafer confirms resolution and defect detection capability. Conclusions: A set of minimum three standard wafer samples is effective to confirm the performance of multibeam SEM for below 7-nm nodes. Besides, we proposed a method to verify the LER values measured by a critical-dimension SEM.\",\"PeriodicalId\":16522,\"journal\":{\"name\":\"Journal of Micro/Nanolithography, MEMS, and MOEMS\",\"volume\":\"14 1\",\"pages\":\"033503 - 033503\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micro/Nanolithography, MEMS, and MOEMS\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMM.18.3.033503\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro/Nanolithography, MEMS, and MOEMS","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JMM.18.3.033503","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

摘要

摘要背景:图案尺寸的持续缩小造成了检测小缺陷的困难。多束扫描电子显微镜(SEM)是一种潜在的检测7纳米节点以下图案的方法。工具的性能取决于电荷控制、分辨率和缺陷检测能力。目的:本研究的目的是建立一种评价7纳米节点多波束扫描电镜性能的方法。方法:通过在12英寸上开发具有程序化缺陷(pd)的各种标准样品。在硅晶片上,我们评估了多波束扫描电镜的性能。结果:第一片晶片具有不同对比度的线间距(LS)模式和pd模式。第二个晶圆具有各种形状的小pd,尺寸为16至12 nm半间距LS模式,约5 nm。第三片晶圆具有极小的PDs,约为1nm,采用LS模式,超低线边缘粗糙度(LER)小于1nm。第一片晶圆片对电荷控制有效,而第二和第三片晶圆片证实了分辨率和缺陷检测能力。结论:一组至少三个标准晶圆样品可以有效地确定多束扫描电镜在7纳米以下节点的性能。此外,我们还提出了一种验证临界维扫描电镜测量的LER值的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of standard samples with programmed defects for evaluation of pattern inspection tools for 7-nm and smaller nodes
Abstract. Background: Continued shrinkage of pattern size has caused difficulties in detecting small defects. Multibeam scanning electron microscopy (SEM) is a potential method for pattern inspection below 7-nm node. Performance of the tool depends on charge control, resolution, and defect detection capability. Aim: The goal of this study is to develop a method for evaluating the performance of multibeam SEM for 7-nm nodes. Approach: By developing various standard samples with programmed defects (PDs) on 12 in. Si wafer, we evaluate the performance of multibeam SEM. Results: The first wafer had line and space (LS) patterns and PDs with varying contrast. A second wafer had various shaped small PDs, ∼5  nm in size in 16- to 12-nm half-pitch LS patterns. A third wafer with extremely small PDs of around 1 nm was fabricated in LS patterns with ultralow line-edge roughness (LER) of less than 1 nm. The first wafer was effective for charge control, whereas second and third wafer confirms resolution and defect detection capability. Conclusions: A set of minimum three standard wafer samples is effective to confirm the performance of multibeam SEM for below 7-nm nodes. Besides, we proposed a method to verify the LER values measured by a critical-dimension SEM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
30.40%
发文量
0
审稿时长
6-12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信