基于卫星的高分辨率降雨产品在河流流量模拟中的性能评价

Q2 Engineering
Dawit Girma, Belete Berhanu
{"title":"基于卫星的高分辨率降雨产品在河流流量模拟中的性能评价","authors":"Dawit Girma, Belete Berhanu","doi":"10.37421/2165-784X.2021.11.383","DOIUrl":null,"url":null,"abstract":"Precipitation data is an intrinsic parameter of rainfall-runoff simulation, since it is strongly hooked into the accuracy of the spatial and temporal representation of the precipitation. In areas where rainfall gauging stations are scarce, additional data sources could also be needed. Satellite platforms have provided as a satisfactory alternative because of their global coverage. Although a good range of satellite-based estimations of precipitation is out there, not all the satellite products are suitable for all regions. In addition, in data-scarce areas where interpolation schemes are applied, it becomes difficult to get an accurate performance assessment; another comparison method is required as rainfall-runoff models. Remotely-sensed estimates are to get realistic and reliable data to be accessed in water resource assessments. Therefore, there is a requirement to evaluate the accuracy of remote sensing techniques. Inter comparison between Satellite rainfall product and observed data were done using point to grid method selecting representative metrological stations. Inter comparison between Satellite rainfall product and observed data were done using point to grid method selecting representative metrological stations. TAMSAT shows the average value of R=0.87 and NS =0.764. Considering four categorical index POD, FAR, FB and HSS, the average value 0.71, 0.22, 0.92, and 0.66 respectively. For CHRIPS average R and NS are 0.88 and 0.755 respectively and categorical index POD, FAR, FB and HSS were 0.8,0.05, 0.85 and 0.81) respectively. The study model stream flow using both CHRIPS and TAMSAT rainfall products by using the SWAT model from 1983 to 2017. The model was calibrated from 1998 to 2003 and validated from 2004 to 2007 using SUFI-2 algorithm embodied in the SWAT-CUP. The Nash-Sutcliffe Efficiency (NSE), linear correlation coefficient (R) and BIAS indices were used to benchmark the model performance and shows very good result (having R2 and NS=0.71- 0.95 during calibration and 0.72-0.97 during validation.","PeriodicalId":52256,"journal":{"name":"Tumu yu Huanjing Gongcheng Xuebao/Journal of Civil and Environmental Engineering","volume":"3 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evaluation of the Performance of High-Resolution Satellite Based Rainfall Products for Stream Flow Simulation\",\"authors\":\"Dawit Girma, Belete Berhanu\",\"doi\":\"10.37421/2165-784X.2021.11.383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precipitation data is an intrinsic parameter of rainfall-runoff simulation, since it is strongly hooked into the accuracy of the spatial and temporal representation of the precipitation. In areas where rainfall gauging stations are scarce, additional data sources could also be needed. Satellite platforms have provided as a satisfactory alternative because of their global coverage. Although a good range of satellite-based estimations of precipitation is out there, not all the satellite products are suitable for all regions. In addition, in data-scarce areas where interpolation schemes are applied, it becomes difficult to get an accurate performance assessment; another comparison method is required as rainfall-runoff models. Remotely-sensed estimates are to get realistic and reliable data to be accessed in water resource assessments. Therefore, there is a requirement to evaluate the accuracy of remote sensing techniques. Inter comparison between Satellite rainfall product and observed data were done using point to grid method selecting representative metrological stations. Inter comparison between Satellite rainfall product and observed data were done using point to grid method selecting representative metrological stations. TAMSAT shows the average value of R=0.87 and NS =0.764. Considering four categorical index POD, FAR, FB and HSS, the average value 0.71, 0.22, 0.92, and 0.66 respectively. For CHRIPS average R and NS are 0.88 and 0.755 respectively and categorical index POD, FAR, FB and HSS were 0.8,0.05, 0.85 and 0.81) respectively. The study model stream flow using both CHRIPS and TAMSAT rainfall products by using the SWAT model from 1983 to 2017. The model was calibrated from 1998 to 2003 and validated from 2004 to 2007 using SUFI-2 algorithm embodied in the SWAT-CUP. The Nash-Sutcliffe Efficiency (NSE), linear correlation coefficient (R) and BIAS indices were used to benchmark the model performance and shows very good result (having R2 and NS=0.71- 0.95 during calibration and 0.72-0.97 during validation.\",\"PeriodicalId\":52256,\"journal\":{\"name\":\"Tumu yu Huanjing Gongcheng Xuebao/Journal of Civil and Environmental Engineering\",\"volume\":\"3 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tumu yu Huanjing Gongcheng Xuebao/Journal of Civil and Environmental Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.37421/2165-784X.2021.11.383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tumu yu Huanjing Gongcheng Xuebao/Journal of Civil and Environmental Engineering","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.37421/2165-784X.2021.11.383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

降水数据是降雨径流模拟的一个内在参数,因为它与降水的时空表征的准确性密切相关。在雨量测量站稀少的地区,可能还需要额外的数据来源。卫星平台由于其全球覆盖范围而提供了一个令人满意的替代方案。虽然目前已有一系列基于卫星的降水估计,但并非所有卫星产品都适用于所有地区。此外,在数据稀缺的地区,应用插值方案,很难得到准确的性能评估;降雨-径流模型需要另一种比较方法。遥感估算是为水资源评估提供现实可靠的数据。因此,需要对遥感技术的精度进行评价。采用点格法,选取有代表性的气象站,对卫星降水产品与观测资料进行了比对。采用点格法,选取有代表性的气象站,对卫星降水产品与观测资料进行了比对。TAMSAT的平均值R=0.87, NS =0.764。POD、FAR、FB、HSS四类指标的平均值分别为0.71、0.22、0.92、0.66。CHRIPS的平均R和NS分别为0.88和0.755,分类指数POD、FAR、FB和HSS分别为0.8、0.05、0.85和0.81。本研究利用1983 - 2017年的SWAT模型,同时使用CHRIPS和TAMSAT降雨产品对河流流量进行了模拟。该模型于1998年至2003年进行了校准,并于2004年至2007年使用SWAT-CUP中包含的SUFI-2算法进行了验证。采用Nash-Sutcliffe效率(NSE)、线性相关系数(R)和BIAS指标对模型性能进行了基准测试,结果显示出非常好的效果(校正时R2和NS=0.71 ~ 0.95,验证时NS= 0.72 ~ 0.97)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of the Performance of High-Resolution Satellite Based Rainfall Products for Stream Flow Simulation
Precipitation data is an intrinsic parameter of rainfall-runoff simulation, since it is strongly hooked into the accuracy of the spatial and temporal representation of the precipitation. In areas where rainfall gauging stations are scarce, additional data sources could also be needed. Satellite platforms have provided as a satisfactory alternative because of their global coverage. Although a good range of satellite-based estimations of precipitation is out there, not all the satellite products are suitable for all regions. In addition, in data-scarce areas where interpolation schemes are applied, it becomes difficult to get an accurate performance assessment; another comparison method is required as rainfall-runoff models. Remotely-sensed estimates are to get realistic and reliable data to be accessed in water resource assessments. Therefore, there is a requirement to evaluate the accuracy of remote sensing techniques. Inter comparison between Satellite rainfall product and observed data were done using point to grid method selecting representative metrological stations. Inter comparison between Satellite rainfall product and observed data were done using point to grid method selecting representative metrological stations. TAMSAT shows the average value of R=0.87 and NS =0.764. Considering four categorical index POD, FAR, FB and HSS, the average value 0.71, 0.22, 0.92, and 0.66 respectively. For CHRIPS average R and NS are 0.88 and 0.755 respectively and categorical index POD, FAR, FB and HSS were 0.8,0.05, 0.85 and 0.81) respectively. The study model stream flow using both CHRIPS and TAMSAT rainfall products by using the SWAT model from 1983 to 2017. The model was calibrated from 1998 to 2003 and validated from 2004 to 2007 using SUFI-2 algorithm embodied in the SWAT-CUP. The Nash-Sutcliffe Efficiency (NSE), linear correlation coefficient (R) and BIAS indices were used to benchmark the model performance and shows very good result (having R2 and NS=0.71- 0.95 during calibration and 0.72-0.97 during validation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
5346
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信